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Abstract. As sensor networks for health monitoring become more preva-
lent, so will the need to control their usage and consumption of energy.
This paper presents a method which leverages the algorithm’s perfor-
mance and energy consumption. By utilising Reinforcement Learning
(RL) techniques, we provide an adaptive framework, which continuously
performs weak training in an energy-aware system. We motivate this
using a realistic example of residential localisation based on Received
Signal Strength (RSS). The method is cheap in terms of work-hours,
calibration and energy usage. It achieves this by utilising other sensors
available in the environment. These other sensors provide weak labels,
which are then used to employ the State-Action-Reward-State-Action
(SARSA) algorithm and train the model over time. Our approach is
evaluated on a simulated localisation environment and validated on a
widely available pervasive health dataset which facilitates realistic resi-
dential localisation using RSS. We show that our method is cheaper to
implement and requires less effort, whilst at the same time providing a
performance enhancement and energy savings over time.

Keywords: Reinforcement Learning · Indoor Localisation · SARSA ·
Energy Efficiency · Pervasive Health.

1 Introduction

Sensor networks for pervasive monitoring of health are increasingly common.
They serve to extend the knowledge of patient’s recovery progress, by collecting
and analysing data long after the patient has left a health care facility and
has returned home. However, the environmental impact of these systems often
takes a secondary place during the design process, surrendering to performance
or practicality of deployment. As these systems become more ubiquitous, the
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energy costs associated with their operation will become an important deciding
factor.

Aided by RL techniques, we propose a new method, designed to alleviate
the need for rigorous training and dependence on energy-consuming sensors. We
do this by performing weak training across the entirety of the sensor network’s
lifespan. Additionally, by utilising more power-hungry sensors sporadically, we
can achieve continuous improvement of performance while at the same time
reducing the need to use them in the first place.

The method is validated by the use of a dataset which was collected within
the SPHERE project [19]. The experiments performed as part of this dataset aim
to resemble ‘natural’ residential behaviours as closely as possible, by including
numerous participants performing scripted and non-scripted actions in a test bed
environment. It includes data from bespoke sensors which are popular within
the pervasive health community. These include RGB-D cameras, environmental
sensors (ES), passive infrared (PIR) and wearable accelerometer and RSS data.
ES often act as Access Points (APs) for the wearable RSS.

In this paper, indoor localisation is considered as a case study. Localisation is
an important objective when rolling out a health monitoring sensor network [20].
Depending upon the sensors used to infer locations, it can also be a significant
consumer of the energy budget in the infrastructure [22]. The study will follow
state-of-the-art localisation techniques as benchmark for our method, presented
in detail in [6].

We aim to provide a reliable and cheap indoor localisation solution capable
of adapting to a persistent environment. This adaptability is required as Re-
ceived Signal Strength-based localisation is notoriously arduous to deploy and
unforgiving in a dynamic environment [7]. The dynamics in this context can
be understood as constantly changing radio frequency (RF) signatures due to
human or non-human factors.

The contributions of this paper include:

1. Novel, energy-aware adaptive localisation algorithm: We create a simulated
environment, closely resembling a real-life localisation system and exhaus-
tively test our method in various simulated experiments.

2. Validation on true pervasive health dataset: We show that the algorithm is
easy to generalise to different environments, and can be adapted to various
localisation models. We do this using data of differing levels of calibration.

3. Effects of action selection: We compare the effects of different action selection
mechanisms in terms of energy-efficiency, and discuss which method is best
suited for this purpose. We perform this test on both the simulated and
real-life experiments.

The paper is structured as follows: In Section 2 we provide the current state-
of-the-art work being done on this topic. Then, in Section 3 we present our
methods and discuss their suitability in terms of this problem. Finally, in Sections
4 and 5, we present our results, discuss their significance and provide points for
future work in 6.
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2 Related work

The problem set out in this paper was inspired by the work done in [13]. Here, the
authors attempt to classify activities of the user by on-body sensors and video
cameras. They also consider the energy consumption of the camera, utilising a
Markov Decision Process (MDP) to decide whether to use weak, but efficient
accelerometer and gyroscope, or strong but inefficient video cameras.

Let us consider the above study in terms of indoor localisation. The idea
of energy-efficient localisation has been proposed before [1,23]. These methods
calculate the energy efficiency directly - either by adapting the transmission
power to the environment, or by inherently using low-power devices. In our paper
we consider energy-efficiency in terms of number of sensors. We aim to reduce
the usage of different sensors, with only a broad idea of their power consumption.
This makes our method easy to generalise and adapt to already existing sensor
networks.

The available pervasive health monitoring sensors, such as PIR or ES [4] differ
in their usability and the quality of their readings. They also differ in how much
energy it takes to operate them and process their results [3]. Low-power wearable
sensors [5] are also popular within the community, providing not only the on-
board acceleration observations, but also acting as a RF anchor. The fusion of
these sensors [6] show that different combinations can provide improvement to
localisation and activity recognition [13] performance.

During infrastructure deployments, it is vital to perform a ‘calibration run’
or fingerprinting. This method is widely acknowledged in literature [16,21], and
involves an offline recording phase and an online localisation phase. Fingerprints
can be recorded whilst performing specific activities [19] or simply ‘living’ in the
house [2]. Fingerprinting is known to be time-consuming, and is often performed
just once [7]. The latter means that the model is not updated or retrained, even
in the case of dynamic environment, which can lead to sub-par performance.

It was also found that each user will perform differently during deployment
calibrations [10]. Performance of the user can vary considerably, regardless of
level of technical knowledge or skill. The model trained by one user may not
work optimally on others. This would necessitate the system remembering, or
dynamically assigning appropriate models to their users. Whilst the users could
theoretically be recognised directly [11], that would involve substantial process-
ing of the sensor data.

As shown, there is a clear need for an adaptive method of continuous weak
learning. We can alleviate the concerns of energy efficiency by making the system
aware of its consumption, even in the broadest of terms. Further, this model
could be adapted to more complicated energy studies. We can also remove the
need for user-specific training by re-estimating the model at certain intervals.
The system would be thus indifferent to specific user training, relying instead
on weak re-estimation over time to tailor the model to specific users.
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3 Method

3.1 Markov Decision Processes and SARSA

The reinforcement problem is formulated using an MDP. MDPs are tuples of
{S,A,P,R}, where S is the state-space, A is the action space, P is the tran-
sition kernel, R the immediate reward function. Additionally, we recognise two
parameters, γ and α – the discount factor and learning rate respectively. For any
MDP, there exists an optimal policy π∗ : S → A. The desired outcome of the
MDP is to estimate this policy. In this paper, we utilise the SARSA algorithm
defined as follows [17]:

Q(st, at)← Q(st, at) + α[r(st, at) + γQ(st+1, at+1)−Q(st, at)] (1)

where Q is the state-action value matrix, which is updated at each iteration, α
is the learning rate, γ is the discount factor, and r ∈ R is the immediate reward
at state st and action at. We assume that the dynamics P are equally likely for
each state, given each action.

We will now formalise our problem in terms of the above. The reinforcement
state space is given by S = {S1, S2}. These two states specify whether at time t
we use ‘enhanced’ or ‘low-power’ sensing. In this paper, S1 will signify the ‘en-
hanced’ sensing, which provides reliable labels at the cost of high-energy usage.
This state also allows for the system to perform the re-estimation of the parame-
ters, using the labels which were recently observed by these sensors. ‘Low-power’
sensors will be denoted by S2. Accordingly, each state will be able to perform one
of two actions A = {A1, A2}, which in turn lead the system to their respective
states.

The reward function was designed to be simple and intuitive. It penalises the
system if it remains in S1 and rewards if in S2. More formally:

r(st, at) =


−1 if st = S1 and at = A1

+1 if st = S2 and at = A2

0 else

Additionally, at each time step the system is rewarded if the performance error is
reduced or remains the same, and penalised if it increases. This forces the system
to continuously seek performance improvement, even if in S2. The error in these
iterations is only calculated during S1 from the currently observed labels - in S2
the system retains the value from t− 1. We denote this boost as B and error as
e:

Bt =

{
−1 if e(t) ≥ e(t− 1)

+1 if e(t) < e(t− 1)
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This reward boost can be trivially added in (1) as follows:

Q(st, at)← Q(st, at) + α[Bt + r(st, at) + γQ(st+1, at+1)−Q(st, at)] (2)

The MDP environment is shown in Fig. 1. The states are given by circles, the
actions are the squares. The numbers next to the arrows specify the reward for
each transition. It is crucial to mention that the state space, parametrised by
the MDP in Fig. 1 differs from the inference state-space, which uses a Hidden
Markov Model. The inference space serves to represent physical surroundings,
as in [6], whereas the MDP state-space is an abstract representation of a system
state machine.

S1

S2

A1

A2

−1

+1

0

0

0

0

Fig. 1: Diagram of the MDP state space.

3.2 Action Selection

Selecting the appropriate action for each iteration is not trivial. There exist
methods ranging from completely random, pseudo-random and greedy. Greedy
selection makes use of the expected future rewards, and exploits them with no
regard to any other alternative trajectories, even if the chosen one is sub-optimal.
In our approach, the trade-off between exploration and exploitation should be
leveraged, such that we converge quickly as to preserve energy, but also retain a
degree of exploration, to continue looking for an optimal trajectory. To do this,
we use the ε-greedy algorithm.
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The difference between Greedy and ε-Greedy lies in the parameter ε. Where
Greedy chooses the next action as Q(st, at) = maxaQ(st, a), ε-Greedy selects an
alternative action with probability ε, ensuring that we explore the trajectories
more thoroughly in the search of the optimal policy π∗. This is because we no
longer ‘exploit’ the reward, prioritising quick convergence, but are open to ‘ex-
plore’ the policy space. The larger the parameter ε, the broader the exploration,
at the cost of higher energy consumption. It is stipulated, that the added adapt-
ability in the form of ε, will make ε-Greedy better when leveraging efficiency and
performance.

Softmax action selection differs from the above methods, in that sub-optimal
choices will be weighted as a graded function of their estimated value. It is likely
to reach the optimal policy quicker than Greedy or ε-Greedy, but at a cost of
higher energy usage. Formally, it chooses action a, with probability [17]:

Pt =
eQt(a)/τ∑n
b=1 e

Qt(b)/τ
(3)

In this study we will consider the above three selection methods: Greedy,
ε-Greedy and Softmax. The usefulness of these methods, given our use case, will
be judged by how well they perform in simulation and during validation.

3.3 Inference

The inference method is the same as the one used in previous work [6]. Us-
ing standard Bayesian filter notation, we describe the joint probability of the
locations xt and observations zt as:

p(x1:t, z1:t) = p(x0)

t∏
i=1

p(zt|xt)p(xt|xt−1) (4)

where p(x0) is the prior, p(zt|xt) are the emissions and p(xt|xt−1) are the
transition dynamics of the system. Each state emits observations at time t. The
symbols in question are sensor observations which we will denote as zt. The
emitting distributions of these observations is best described by a Gaussian:

p(zt|xt) =

K∑
k=1

N (zt|µjk, σjk) (5)

where 1 ≤ j ≤ T are the location states, and 1 ≤ k ≤ M is the number of AP
sensors.

3.4 Parameter Re-Estimation

When the system enters S1, it is allowed to access to labels from reliable ‘or-
acle’ sensors. The labels from each ‘oracle’ can be considered as the real pre-
diction of location. Each of these ‘oracles’ maps its output to a given location
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state. If the ‘oracles’ are activated at time t, the system can re-estimate the old
emission and transition probabilities with the observations from this ‘oracle’, to
which it currently has access. This is done with a single iteration of Expectation-
Maximisation (EM) of the previous Gaussian distribution and a sample ot. The
weighting in EM specifies how much we trust the ‘oracle’ reading – in essence,
it specifies how much of the old distribution should be retained. The optimal
weights were found empirically for both the simulation and validation.

3.5 Proposed Algorithm

The following pseudo-code is only intended to serve as an outline of the novel
part of the algorithm. With regards to HMM parameter estimation and Forward-
Backward inference we refer the reader to the literature, for example [14] and
[18].

Input: {λ,V} = HMM parameters, {S,A,P,R, γ, α} = SARSA parameters
while O available do
O ← vector of sensor observations at t
V ← infer location P (V|O, λ)
if st == S1 then

Γ ← vector of weak oracle labels at t
λ∗ ← estimate likelihood L(λ|Γ )
e(t)← compare V with Γ

else
if st == S2 then

λ∗ ← λ
e(t)← e(t− 1)

end

end
if e(t) ≥ e(t− 1) then

Bt = -1
else

if e(t) < e(t− 1) then
Bt = 1

end

end
at+1 ← next action based on Greedy, ε-Greedy or Softmax and dynamics P
st+1 ← at
Q(st, at)← Q(st, at) + α[Bt + r(st, at) + γQ(st+1, at+1)−Q(st, at)]
st ← st+1

at ← at+1

λ← λ∗

end
Algorithm 1: Proposed Algorithm

Algorithm 1 starts by initialising the HMM and SARSA parameters. Note,
that for HMM, V represents the available state space, whereas V is the inferred,
most likely sequence of states. It runs as long as there is data coming from the
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sensors, shown here asO. We assume that the incoming data stream is vectorised.
Each iteration of time t specifies a new vector of incoming data, either collected
from ‘oracle’ and RSS sensors, or just RSS. This is dependent upon the state in
which the system resided at t−1. Inference is performed by running the Forward-
Backward algorithm. Depending on the current state of the MDP, the output
of this could be compared with the weak labels provided by the ‘oracles’, and
the HMM parameters λ could be re-estimated. If not, the error is retained from
the previous run. The reward boost assignment then follows, again, dependent
upon the current state. After choosing next action, with respect to the selection
method, SARSA is used to calculate Q(st, at).

The algorithm will be evaluated on a simulated environment and validated
on SPHERE Challenge dataset. In the simulation, we aim to scrutinise the al-
gorithm under comprehensive set of changes in the environment, in order to
confirm its capabilities and demonstrate its effectiveness. The validation dataset
will serve to verify its usefulness under real-world conditions.

4 Evaluation

The simulation setup was created to closely resemble a real-life system. A state-
space of varying size was created. Each state j is described in terms of arriving
symbols ot from all M APs. Both the size of the simulation space and the num-
ber of simulated APs were incremented. For the simulation space, this changed
from 10 to 30, in increments of 10. The size of every state was 1m × 1m. For
APs, the number ranged from 5 to 8. The distributions from each AP were sim-
ulated according to a BLE path loss model. The parameters of the model were
appropriated from [12], which was calculated in the same test-bed environment
as the SPHERE Challenge dataset. We also define ‘oracles’ in a simulation en-
vironment as states, which we observe directly at all time T . The amount of
‘oracle’ coverage of the state space was also incremented in 10% intervals from
10% to 100%.

The 3 curves presented in Figs. 2, 3, 4, 6, 8, 10, are dubbed Control, Re-
inforced and Underlying. The Underlying curve shows the result of the funda-
mental distributions which were generated when the synthetic state space was
created. They describe the underlying model of the simulated state space, and
can be thought of as a localisation result under optimal policy π∗. The Control
curve show the result of the the same fundamental distributions, albeit with
3dB of Additive White Gaussian Noise (AWGN) added. This simulates a noisy
channel in the indoor environment. The Reinforced distribution is regulated by
the presented method. The Control and Reinforced models begin as one and
the same. The objective to observe is the Reinforced curve tending towards the
Underlying curve as the number of plays is increased, effectively showing how
close the algorithm is to the optimal model.

The metric used to measure the performance of the algorithms is the distance
error. The distance error is defined as the shortest Euclidean distance between
prediction and label in Cartesian space. This metric has previously been used in
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Fig. 2: Distance error per oracle coverage under Greedy regime.

Fig. 3: Distance error per oracle coverage under ε-Greedy regime.

Fig. 4: Distance error per oracle coverage under Softmax regime.
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Fig. 5: Oracle Sensors Dependence,
Greedy regime

Fig. 6: Distance error results, Greedy
regime

Fig. 7: Oracle Sensors Dependence,
ε-Greedy regime

Fig. 8: Distance error results, ε-Greedy
regime

Fig. 9: Oracle Sensors Dependence,
Softmax regime

Fig. 10: Distance error results, Softmax
regime
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[6] and is considered as standard in the literature [9]. The metric used to show
the dependence on energy-inefficient sensors is the total number of iterations
where the system stayed in S1, divided by the total number of iterations. The
normalisation of this metric allows us to represent the dependence as a variable
between [0, 1). The closer to 1, the more dependent the system is on multiple
sensors. The simulation MDP parameters of α and γ were set to 0.4 and 0.9
respectively, and the oracle weight during each re-estimation is 0.7. All of the
above were chosen empirically, as they were found to provide best localisation
results.

Considering the results of ‘oracle’ usage, the graphs in Figs. 2, 3, 4 show the
average performance of the algorithm as a function of ‘oracle’ coverage. These
graphs confirm that the algorithm is viable - the performance of the algorithm
under different action selection regimes was compatible with the prediction. The
improvement in performance is a function of how much state space is covered
by ‘oracles’. Depending upon which action selection method is chosen, the im-
provement varies between 0.5m for Greedy to 1.5m for Softmax.

We will now discuss the dependency results from the simulated environment.
The graphs are consistent with the hypothesised effect of the action selection
method. The 3 Figures, 5, 7 and 9 show the results of Greedy, ε-Greedy and
Softmax selections respectively. Greedy selection exploits the rewards immedi-
ately, and converges to near 0 dependence on ‘oracles’. This in turn shows, that
the closer we are to 0, the faster the distance error converges in Fig. 6. The con-
vergence here is sub-optimal, as the trajectory of the system could be improved.
This is visible in Fig. 10. The Softmax method was used with a temperature of
τ = 1. This is displayed with a dependence graph in Fig. 9. A gradual roll-off
improves the localisation performance. However, this results in higher energy
usage, as the energy-heavy senor usage converges to 0.2.

Figures 7, 8, 9 and 10 show the optimal trade-off between energy efficiency
and quickness of training. The ε-Greedy algorithm quickly reaches the mean of
0.1, which is consistent with the parameter ε, set to the same value. The Softmax
regime provides less erratic reduction of the dependence, in turn providing a
better localisation performance.

The above results are consistent with the theoretical hypothesis. Figs. 2, 3,
4 confirm, that as the number of oracles increases, so does the improvement in
performance. The dependency in 5, 7 and 9 agree with the respective action
selection methods. The graphs in Figs. 6, 8 and 10 also conform to their respec-
tive regimes. All of the methods will be tested on the SPHERE Challenge data
for completeness – however only these two are in contention to see which one is
optimal for the use with this algorithm.

5 Validation & Results

The SPHERE Challenge dataset was chosen for this study, as in addition to
thoroughly labelled location data, it also includes sensors which can be construed
as ‘oracles’. These sensors include RGB-D video cameras and Passive Infrared
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Fig. 11: Oracle Sensors Dependence,
Greedy regime

Fig. 12: Distance error results, Greedy
regime

Fig. 13: Oracle Sensors Dependence,
ε-Greedy regime

Fig. 14: Distance error results, ε-Greedy
regime

Fig. 15: Oracle Sensors Dependence,
Softmax regime

Fig. 16: Distance error results, Softmax
regime



Energy Efficiency in Reinforcement Learning for Wireless Sensor Networks 13

(PIR) sensors. The dataset was collected in a 2-storey house currently serving as
a pervasive health test bed. The house includes all the amenities and comforts
found in a typical residential abode. For further details, we refer the reader to
[19]. The version of the dataset used in this study includes labels not available
in public domain at the time of publication.

Along with the RSS information available from 4-unique APs scattered around
the house, we also have access to room-level location labels. The house includes
a total of 9 labelled rooms. No cameras were placed in sensitive locations in the
house which meant that some states would lack descriptor ‘oracles’. The rooms
which did include ‘oracles’ are the kitchen, the living room and the downstairs
hallway. The PIR sensors however are available in every room. Their usage was
limited however, as their reliability was poor. They were used to re-estimate,
but were omitted from localisation inference.

The method follows as before. After training a weak model, the energy us-
age and the relative performance are being scrutinised and leveraged. The data
included 19 unique scripted and labelled experiments. In order to obtain a fair
result, the training and test proportions were set at 15% to 85% respectively. At
any one time, a uniform random selection of 3 experiments were chosen to train
the model. Testing was performed by running the remainder of user data in a
randomly permuted order. This method was repeated n = 100 times.

The system was set up such that in S1 the system uses a fusion of RSS and
camera data. Again, in this state, the parameters are re-estimated according
to the labels provided by the ‘oracles’. As was mentioned above, the PIR were
used to re-estimate, but were omitted from location inference. In S2, the system
relies only on the RSS, with no parameter mixing. The graphs again show the
dependency on ‘oracle’ sensors, normalised to 1, and the localisation error con-
vergence graph. The latter further diverges into the control distribution, which
is the model trained on initial users and reinforced distribution, which is being
continually re-estimated. The localisation labels are room-level.

The results are presented in Tables 1 and 2. They show, that the method holds
when exposed to non-simulated data. Fig. 13 shows the dependency graph, with
a steady decline in energy-inefficient sensor usage. This can very closely correlate
to lower energy consumption. The variability of the dependence was likely caused

Table 1: SPHERE Challenge performance results

Selection Model 25% of Exp.(m) 50% of Exp.(m) 100% of Exp.(m)

Greedy Control 4.79 (± 0.41) 4.87 (± 0.43) 4.89 (± 0.43)

Reinforced 2.34 (± 0.90) 2.67 (± 1.05) 2.54 (± 1.00)

ε-Greedy Control 4.82 (± 0.45) 4.89 (± 0.42) 4.85 (± 0.41)

Reinforced 1.77 (± 0.45) 2.09 (± 0.84) 2.11 (± 0.77)

Softmax Control 4.83 (± 0.40) 4.80 (± 0.39) 4.84 (± 0.46)

Reinforced 2.24 (± 0.98) 2.03(± 0.85) 1.80 (± 0.55)
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Table 2: SPHERE Challenge dependence results

Selection 25% Iterated 50% Iterated 100% Iterated

Greedy 0.19 (± 0.39) 0.03 (± 0.17) 0 (± 0)

ε-Greedy 0.88 (± 0.33) 0.13 (± 0.34) 0.16 (± 0.37)

Softmax 0.53 (± 0.5) 0.36 (± 0.48) 0.35 (± 0.48)

by the dataset itself. The labels were room-level, which meant that even slight
deviation would substantially increase the error. The performance in Fig. 14
also shows a steady performance increase from the control distribution, as the
number of plays is being increased.

The data was also scrutinised under the other two action selection regimes.
The results for Greedy and Softmax methods are shown in Figs. 12 and 16.
The performance of these methods is consistent with the simulated results. For
Greedy in Figs. 11 and 12, the system reaches the maximum reward and re-
mains in the ‘low-power’ state. It is also for this method that the performance
improvement, relative to the Control model, is the smallest.

Softmax in Figs. 15 and 16, shows a volatile convergence of the dependence.
This however translates to a persistent improvement of localisation result. The
dependence might be due to the fact that the data used was not as consistent as
in the simulation. As it was noted in Section 2, training and calibration differs
for each user. Since this difference was not encoded in the simulation, it could
explain the reason for the behaviour of the Softmax method.

Due to this volatility, as well as higher relative sensor usage in Fig. 15, com-
pared with 13, the ε-Greedy method is the superior method in terms of action
selection. This selection method offers a good trade-off between the average sen-
sor usage and the improvement of performance. Whilst the parameter ε was set
to 0.1 again, it can be changed depending on the need, allowing it to be more
controllable than Greedy or Softmax.

Whilst ε-Greedy is the best method for this particular use, the other meth-
ods could be advantageous in the context of other sensor applications. Softmax
could perform well when considering the amount of sensors used, as opposed to
their type, in terms of indoor localisation. In this case, more exploration could
translate to better performance, with less regard paid to energy efficiency [8]. On
the other hand, applications where efficiency is critical, could benefit most from
Greedy selection. These applications could include on-board feature extraction
and activity recognition [3,15] which would ideally run for a prolonged period of
time without recharging.
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6 Conclusion

This study has shown a novel adaptive technique for energy-aware indoor lo-
calisation. A simulated environment was built and scrutinised against different
methods of action selection. A widely available dataset was then used to validate
the hypothesised performance under data collected in a real pervasive health test
bed. This paper shows that the algorithm can generalise well to non-simulated
settings and environments, even when using a dataset which was not inherently
collected with localisation in mind.

Results show that using as many sensors as possible is not always advanta-
geous. Comparable performance can be achieved with fewer, by employing the
presented algorithm. Through the reduction of the dependence on inefficient sen-
sors we can control the environmental impact of the infrastructure. The study
also showed the importance of action selection on the effectiveness of the algo-
rithm. This has a direct effect on the performance-efficiency trade-off. The choice
of the regime can make it easier for the user to tune the parameters as they see
fit, whether they put more emphasis on performance or efficiency.

Further work will include generalising this method to a different dataset, not
necessarily concentrating on the localisation performance. Activity recognition
or other data fusion techniques, scrutinised under energy efficiency can also be
studied. A better simulation model for these particular problems could also be
developed - one which includes dynamic AP selections and ‘oracles’ which are
to some degree fallible. Further work could also be performed on how the state
space of this algorithm can scale up or down, in terms of the number of states.
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