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Abstract—The efficient and effective deployment of Internet of
Things (IoT) systems in real world scenarios remains a challenge,
particularly in applications such as indoor localisation. Various
methods have been proposed recently to calibrate localisation
systems, ranging from precise but time consuming processes to
those involving little explicit calibration based on a crowdsourced
collection of data over time. However it is not clear how to
estimate and compare the quality of a specific instance of a
calibration. In this paper we present a simple yet effective method
of calibrating a Smart Home in a Box (SHiB) together with a
framework to combine calibrations while assessing their quality.
Our empirical results demonstrate that our calibration method
can be performed by untrained users in a short period of time
yet is capable of up to 92% accuracy in room level localisation
on free living experimental data.

I. INTRODUCTION

Due to the the proliferation of the Internet of Things (IoT),
connected devices within home environments are becoming
increasingly common. These devices can both interact with
and collect vast amounts of data on the surrounding envi-
ronment and thus naturally have many useful applications
ranging from transport to healthcare. The use of wireless
sensor networks facilitates many tasks, including behaviour
and activity monitoring [1], environmental monitoring [2]
and indoor localisation [3]. The effective deployment of such
systems remains a challenge, with many requiring installation
and calibration by experts.

Recent work in the so called Smart Home in a Box (SHiB)
area aims to provide smart home capabilities that can be
deployed and used quickly without extensive training. One
such system is the EurValve SHiB [4] consisting of four
gateways which receive accelerometer data from a wrist worn
wearable device over Bluetooth Low Energy (BLE). The pri-
mary objective of the system is to perform activity monitoring
and localisation; it is currently under deployment in the homes
of 60 patients undergoing heart valve surgery. In order to do
this the wrist worn wearable samples accelerometer readings at
25Hz and sends the data to each gateway. We refer the reader
to Appendix. A for a detailed description. Importantly, the
Received Signal Strength Indication (RSSI) from the wearable
is recorded at each gateway and thus provides a potential
means of determining the senders location. RSSI is attractive
as it is typically provided by the radio hardware and thus in-
expensive and readily available to use. However RSSI is often
considered unreliable for localisation purposes [5] because the
surrounding environment has a significant influence on the
calculated RSSI values. Radio frequency noise, interference
of objects and a constantly changing environment, e.g. due

to the movement of people, cause RSSI values to exhibit a
strong variability. Nonetheless there have been a number of
approaches in the literature attempting to solve these issues
and utilise this commonly available signal [6], [7].

However, the initial calibration of the system is one of
the key remaining challenges. There exist two main strands
of work in this area; the first involves a detailed calibration,
usually by an expert and may require additional information
such as floorplans. The second approach attempts to perform
the calibration in a (partially) unsupervised manner. The
downside of the former is that it is often a time consuming
and convoluted process requiring an expert, while the latter
usually relies on crowdsourcing data gathered from multiple
people over time [8]. Both contradict our initial aim of a SHiB
deployed and setup in their home by individual users.

The main contributions of this work are as follows.

• We propose an quick and easy method of calibrating
a SHiB for indoor localisation.

• We analyse the influence on localisation performance
of the skill of the individual carrying out the calibra-
tion.

• We show that the experience of the calibrator does not
necessarily improve the performance as evidence that
our calibration process is simple.

• We present a framework to combine (when available)
several calibrations, based on the concept of learning
from crowds, to evaluate the quality of each calibration
while achieving a better performance.

• We make available for the community a new dataset
for indoor localisation including calibrations by ten
individuals as well as a free living dataset1.

II. RELATED WORK

Indoor localisation in Smart Homes has been thoroughly
studied in the past decade. An interesting overview of nu-
merous techniques were proposed in the Microsoft indoor
localisation competition in 2014 [3]. They conclude the indoor
localisation problem is not solved with one of the major issues
being the deployment overhead; with an average setup time of
5 hours.

1The dataset can be downloaded at
https://seis.bris.ac.uk/ rm17770/calibration/



Although common approaches propose the use of radio
propagation methods, these tend to require expert knowledge
and many precise measurements taken for calibration[9], [10].
These types of methods are not compatible with our ease of
deployment requirement.

Alternatively, fingerprint based techniques such as [11]
introduce methods for room level localisation although require
floorplan. Similarly, HIWL [7] requires knowledge of the
rooms and a time consuming calibration process to train a
Hidden Markov Model based approach on RSSI data. The
authors use a programmed node that collects RSSI values
throughout the room, taking over 5 hours. Along the same
lines UMLI [6] uses hierarchical clustering to first achieve floor
level localisation, followed by finer grained room level locali-
sation. However, they rely on the availability of a large number
of access points. Finally, these approaches can be extended
with the use of additional data sources (e.g., GPS [12]). These
algorithms do not meet our goal of not relying on extensive
prior layout knowledge.

Very recently, Zhen et al. have presented BigLoc [13]
which specifically attempts to solve the localisation problem
in large indoor spaces using hundreds of access points for
floor level localisation. Chen et al. propose a method Graph
Loc [8] which requires no upfront calibration. Their graph
based method does however require a physical floor plan and
crowdsourcing in order to collect a large amount of RSSI data.
Similarly Shimosaka et al. [14] propose an approach which
requires a floorplan. We refer the reader to a recent review [15]
which discusses existing localisation methods as well as prac-
tical deployment concerns, mainly reducing the fingerprinting
step (site survey), the calibration of heterogeneous devices, and
energy efficiency. For our approach, the first and last concerns
are of the up-most importance. In terms of energy efficiency
our system utilises a wearable with approximately 3 weeks of
battery life. Our fingerprinting step is also designed to be as
simple as possible such that untrained users can deploy and
calibrate it, yet also provide enough information that we can
accurately perform room level localisation.

III. A SIMPLE CALIBRATION

The key to the effective use of our SHiB for localisation
is the calibration process that will provide us with labels we
can use to build a model for each deployment. We have a
number of constraints that must be taken into account by
any calibration process. Firstly, we have no knowledge of the
home environment the kit will be deployed in. Secondly, the
kit will be deployed by the user. Our typical user profile is
expected to be elderly and of potentially poor health. The
users are chosen due to medical necessity and thus may not
be technically capable. In order to gather a fingerprint for the
entire room, ideally the user could walk around the room to
cover the whole area. In order to reduce the complexity of
this task, we just ask the user to perform the activity that
they most commonly undertake in each room. This might not
provide us with the best coverage but it is simpler while also
characterising the habitual use of the room. Finally, the user
will have the system for a period of time and there is no
guarantee that they will perform the calibration immediately
upon installation. Thus the method must also result in a clear
signal that a calibration is taking place so the calibration labels

can be extracted. The entire calibration process should take
around around ten minutes.

A. Installation

The user deploys five pieces of hardware, a 4G router
for data transfer and four gateways that are responsible for
receiving data from the wearable. Three of the gateways are
labelled with common rooms of interest in a residential setting;
the living room, kitchen, and bedroom. A fourth gateway is
provided for the user to place at a location of their own
choosing.

B. Calibration

After each gateway is plugged into a power socket and
turned on, the user must complete the following steps. For
each gateway, the user places the wearable very close to the
gateway for ten seconds. This causes a spike in the strength
of the RSSI. The purpose of this is to provide a landmark in
the data such that each calibration can easily be automatically
extracted. This landmark can be used for automatic extraction
and segmentation of the calibration. Following this, the user
then performs a specific activity in the room for two minutes.
The living room consists of sitting down, the kitchen involves
walking around, the bedroom requires lying down and the final
gateway, standing. The reason for this is twofold. The first is
that these activities loosely correspond to the expected usual
activities carried out in the room. The second reason is that,
but not within scope of this paper, we plan to perform activity
recognition and this provides us with labels for four different
types of activity.

IV. MEASURING THE QUALITY OF A CALIBRATION

1) Data Collection: In order to provide a better understand-
ing of our system and move towards a measure of the quality of
a calibration, we collected data in the smart home environment
of the SPHERE house [16] with the EurValve SHiB deployed.
There, we instructed ten users to complete a full calibration.
In all our our experiments the mean RSSI value from each
gateway is computed over a one second window.

2) Evaluation of Individual Calibrators: Our first task
analyses each calibration individually in order to estimate the
localisation performance possible for each user. We will do
this via stratified 10-Fold cross-validation on each individual
calibration.

As we can see in Fig. 1 that the performance of each
calibrator varies. Nonetheless with many of the classifiers the
performance of all calibrators is similarly high. One source
of error is related to the unreliability of RSSI. As we can
see in Fig. 3, it is not always the case that the largest RSSI
corresponds to the closest (in the same room) gateway. For
instance, the living room and bedroom RSSI values in the first
quarter of the chart in Fig. 3((a)) are somewhat interlaced,
even though the participant is mostly static sitting within the
living room. In comparison, the other RSSI plot in Fig. 3((b)),
produced just thirty minutes later, the signals have much more
separation. The floor plans of the building can be found in
[17], where the living room and bedroom correspond to the
‘lounge’ and ‘bedroom 2’ respectively.
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Fig. 1: Calibration performance over a number of classifiers
for all calibrators.
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Fig. 2: Calibration performance when using a Leave One
Group Out approach. A group here corresponds to a calibrator.

We also conduct a leave-one-out evaluation by training
on the calibrations of 9 calibrators and testing on the final
withheld calibrator. In Fig. 2 we can see that there is a higher
degree of variability in the predictive performance across
calibrators. For example, testing on some calibrators achieves
almost perfect accuracy, while others achieve under 80%.

In fact, this intuition can be seen in the overlap present in
the Principal Component Analysis (PCA) plots taken from the
same two calibrations. Fig. 4 shows the difficulty in separating
the living room and bedroom RSSI vectors even though they
are on separate floors. This is most obvious in the worst
performing PCA plot.

3) Evaluation of Calibrator Experience: In this section we
would like to investigate if the experience of the calibrator
has any influence on localisation performance. Intuitively we
would expect that carrying out the same calibration steps again
would result in as stronger adherence to the process, and thus
perhaps, increased performance. This is of particular interest
as our system is designed to be easy to set up, and as part
of the EurValve protocol the participants will be setting up
the system several times, over a period of approximately nine
months. In order to study the effect of calibration experience
we asked three calibrators to perform a second calibration on
a different day than their first. Each time they followed the
same calibration steps.

From Fig. 5 it is clear that calibration experience does not
significantly improve the predictive power for localisation. In
fact, only one of the three calibrators saw an improvement in
performance with a subsequent calibration. This same calibra-
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((a)) In the first quarter the livingroom and bedroom RSSI values are often
intertwined despite being stationary in the livingroom.
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((b)) A much better seperation of RSSI values from each room is clear in this
calibration.

Fig. 3: The RSSI values received during the calibration of two
calibrators.
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Fig. 4: RSSI PCA plot from the best performing calibration
(a) and worst performing (b).

tor then performed a third calibration, again on a different day
than the previous two. The results of which can be seen in
Fig. 5(b). In this third calibration the performance decreased.
From these empirical experiments we see that there is no clear
correlation between calibration experience and the resulting
localisation performance. Further we see this as initial evidence
that our IoT system and calibration process meets our objective
of being straightforward and simple to calibrate.

4) Evaluation on Free Living Data: So far our evaluations
have only been performed on data gathered as part of the
calibration process. To properly evaluate our calibration pro-
cess we collected data where one participant was carrying out
unscripted ‘free living’ within the house for a number of hours.
In our test data this included common activities across rooms
such as making and eating lunch and sitting on the sofa. This
makes a suitable test dataset to establish each of the calibrators
predictive performance on, as the test participant was carrying
out natural activities in different parts of the rooms and indeed
house. The ground truth for this dataset was gathered with the
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Fig. 5: The calibration performance of calibrators over 2 (a)
and 3 (b) separate calibrations performed on different days.
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Fig. 6: The performance of each calibrator where a linear SVM
was trained on their calibration and tested on a free living
experiment.

use of a 4K video camera and numerical tags placed on the
floor of the house. There were typically five tags per room
including one at the entrance to the room.

For each of the ten calibrations we trained a number of
classifiers and then tested the models on the free living test
dataset. From Fig. 6 we can see that for nearly all classifiers
we achieve good predictive performance for most of the
calibrators. In two of the confusion matrices from the free
living experiment it is clear that a number of the errors come
again from the difficulty in distinguishing the living room
and bedroom gateways. Again this corresponds with what we
discovered previously in Sec. IV-2.

Looking closer at the results, and using the linear SVM
as an example, the majority of calibrators achieve accuracy
scores of over 90%. However, one calibrator achieves a score
of 78%, a drop of around 12%. Thus, it is clear that not all
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Fig. 7: Confusion matrices from two of the calibrators. Here
it clear there is varying levels of misclassification between the
livingroom and bedroom in both and the kitchen and stairs in
one.

calibrations are equally good on the test set. This has been a
consistent trend in our investigations thus far. In the following
section we will explore a framework to determine the quality
of each calibration while improving performance by learning
from the combination of calibrations.

V. COMBINING MULTIPLE CALIBRATIONS: LEARNING
FROM CROWDS

The idea of utilising the knowledge of crowds [18] has
became increasingly attractive with online crowd sourcing
services that allow many people to carry out requested tasks.
Researchers in Machine Learning have used such services to
crowdsource the annotation of labels for their datasets. The
result is instances from the dataset are labelled by a number of
annotators. One major problem however is that the annotators
may have various levels of expertise and thus the labels are of
varying qualities.

We propose that our problem can be framed in a similar
way; specifically each calibrator can be considered an anno-
tator. In our protocol we receive a number of calibrations
per user, and while we have shown that expertise does not
necessarily increase with experience there is a clear variability
in the quality of each calibration. Thus an approach such as
this may help improve the overall performance by weighting
each calibration by its effectiveness. However in our proposed
approach the calibrator is not directly annotating the test
subjects location in the test set. Rather their annotations on
the test set are inferred from their calibration. In order to infer
these annotations we use the predictions of a classifier trained
on their calibration which is then then used to predict their
annotations for the test set. In other words, their annotations
are the predictions of a model built on their calibration. The
result is ten annotations for each second of the test set.

We will have two types of error in the annotations due to
the, (1) varying ability of the calibrator and, (2) the model
itself. Importantly the quality of the annotations vary in a
similar way to that of traditional crowdsourced annotators.
Furthermore, as we have previously shown that there is often
misclassification between certain rooms, we propose that given
different annotations the ‘crowd’ may be able to rectify this.

In order to evaluate the learning from crowds approaches



we test each methods performance at estimating the single
ground truth and build the model on part of the test set, as
well as the final model performance on an unseen portion
of the test dataset. As baselines two majority voting based
methods were used. In hard instance (MVH) the majority
decision by all of the annotators are chosen as the label. In the
soft instance (MVS) the decisions of the annotators for each
instance are probabilistic. Two less naive methods are also
employed to estimate the quality of the annotators, specifically
that of Raykar et al. (Raykar) [18] and Rodrigues et al.
(MA) [19]. The Raykar method learns the ground truth labels
and the classifier jointly. They treat the unobserved ground
truth labels as latent variables and use Maximum Likelihood
Estimation to find the parameters for their model by estimating
the ground the posterior distribution in order to determine the
quality of annotators and their logistic regression parameters.
The MA method primarily differs in that the reliability of the
annotators is treated as a latent variable.

The average performance for each approach on the test
set can be seen in Fig. 8 along with the average accuracy
of each individual. In general the best performance, up to
6 percentage points higher, is found by the probabilistic and
learning from crowd approaches. As we have the annotations
for the test set (note that these are not used during training) we
can calculate the average accuracy of the annotators on the test
set as 87%. This is also reflected in the poorer performance
of the hard majority voting approach which discards any
probabilistic information about an annotation; the annotator
was either correct or not. The probabilistic majority voting
(MVS) scored 92.5%. The MA method achieved the highest
accuracy with 93.1%, with Raykar achieving 92.8%. The better
performance of the MA and Raykar methods can be explained
due to the fact that they took into account the reliability and
quality of the annotators and thus achieved better performance
on the unseen test set. Note that while the first two bars in
Figure 8 show the mean performance, the performance of the
individual calibrators ranged from 75% to 92%. The mean of
87% reflects the fact that most scores were indeed much closer
to the higher end than the lower. The best learning from crowds
approach, MA, was able to improve upon the true ground truth
performance of all of the annotators. The highest performing
annotator was 92% in the ground truth of the test set while
the MA model achieved 93%.

A full evaluation of the performance of the methods are
out of scope of this paper, given space limitations, however
it is clear that by utilising the multiple annotations we can
achieve higher levels of accuracy for localisation. As we have
seen in Sect. IV-3 while an annotator may not improve with
experience, methods involving utilising all of the annotations
leads to improved performance in all cases.

VI. CONCLUSION

In this work we proposed a simple and efficient calibration
method for the deployment of a SHiB kit that is capable of
accurate room level localisation. We performed the calibration
process with ten different participants and thoroughly evalu-
ated machine learning methods on the individual and combined
calibrations in order to evaluate their quality for localisation.
Given the simplicity of the calibration, we also discovered
that experience does not necessarily improve the calibration
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Fig. 8: A comparison of the average accuracy of each method
on the test set where each method had no access to the test
set annotations. The mean accuracy of the true annotations by
the individual annotators is also included.

process and thus it appears that there is nothing to be gained
from the use of an experienced calibrator with our system and
calibration process. In addition we evaluated the calibration
process on an unscripted free living experiment and found the
best calibration could achieve up to 92% accuracy. Finally,
we explored the use of learning from crowd based techniques
that could exploit the fact that each calibration will be carried
out numerous times by the same participant over a period of
time. The results of these techniques were promising in that
the localisation performance could be improved to 93% from
the mean performance across individuals on the same test set
of 87%.

APPENDIX A
EURVALVE SMART HOME IN A BOX

The EurValve system [4] was designed to be a scalable
smart home in a box (SHiB). The system is to be deployed in
the homes of 60 patients who will be undergoing heart valve
surgery and will collect data before and after the surgery. It
is low cost and relatively easy to install and use. The system
was designed such that the patients would be able to deploy
the kit themselves with as little instruction as possible. Due
to design constraints the system only provides accelerometer
data and RSSI for each gateway. The system is comprised as
follows.

1) Wifi/Cellular router: The router provides Internet access
(over the cellular link) for accessing network time protocol
servers, submitting gateway system monitoring information,
and transferring gateway daily log files to the central database.
The gateways communicate with the router over WiFi.

2) Wrist worn wearable: The wearable is comprised of
an integrated microprocessor and Bluetooth Low Power radio
chip, flash module, and a three dimensional accelerometer. The
flash module can store up to 512 MBs of data and is used to
store all accelerometer samples.

The wearable takes 25 three dimensional accelerometer
samples per second. Each sample provides the x, y, and z
gravitational measure with 8 bits of accuracy between ± 4g.
Every 200 milliseconds, 5 accelerometer samples are put into
a BLE advertisement packet and transmitted.



The wearable constantly transmits 5 BLE advertisements
each with 5 accelerometer samples until the battery is dis-
charged. Under this workload, the wearable has been shown
to last for up to three weeks without recharging.

3) Gateways: The four gateways act as the localisation
anchor points for the system. Each gateway is a Raspberry
Pi 3, Model B, which come with an integrated WiFi and
Bluetooth Low Power radio. When a BLE advertisement
packet is received, the contained accelerometer samples are
logged to the daily log file stored on the gateway’s SD card.
The log for each packet includes the RSSI and a network
time protocol based time stamp. The gateways report system
monitoring information hourly and each night send the daily
log file to the central database.

4) Operation: The users wear the wearable device on their
wrist and only take it off when bathing (during this time the
wearable can be charged). When in the home, it is expected
that one or more of the gateways will be within range and
receive the constantly transmitted BLE advertisements from
the wearable. Accelerometer data produced while out of the
home can be retrieved later from the flash memory of the
wearable. Although when out of range no gateways can collect
the packet and thus no RSSI information will be available.
Nonetheless, this is acceptable for the problem of indoor
localisation.
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