
Accelerating Large Scale Centroid-Based
Clustering with Locality Sensitive Hashing

Ryan McConville, Xin Cao, Weiru Liu, Paul Miller
School of Electrical, Electronic Engineering and

Computer Science
Queen's University Belfast

{rmcconville07, x.cao, w.liu, p.miller}@qub.ac.uk

Abstract-Most traditional data mining algorithms struggle
to cope with the sheer scale of data efficiently. In this paper, we
propose a general framework to accelerate existing algorithms
to cluster large-scale datasets which contain large numbers of
attributes, items, and clusters. Our framework makes use of
locality sensitive hashing to significantly reduce the cluster search
space. We also theoretically prove that our framework has a
guaranteed error bound in terms of the clustering quality. This
framework can be applied to a set of centroid-based clustering
algorithms that assign an object to the most similar cluster, and
we adopt the popular K-Modes categorical clustering algorithm
to present how the framework can be applied. We validated our
framework with five synthetic datasets and a real world Yahoo!
Answers dataset. The experimental results demonstrate that our
framework is able to speed up the existing clustering algorithm
between factors of 2 and 6, while maintaining comparable cluster
purity.

I. INTRODUCTION.

Data clustering [1] is a widely used data mining technique
for the unsupervised grouping of data points, items or patterns.
The goal is to automatically discover these groupings from
unlabelled data. The problem can usually be formulated as
given n items, discover k groups using suitable similarity
measures which maximise the degree of similarity of items
in the same group, while minimising the degree of similarity
of items in different groups.

Typically, in centroid-based clustering algorithms (e.g., K
Means [2] and K-Modes [3]), clusters are represented by a
central vector, and the clustering task is usually defined as
an optimisation problem: find k clusters and assign the items
to the closest or most similar cluster such that a certain
measure (e.g., the squared distances in K-Means) is minimised.
Therefore, similarity (or distance) comparisons can be a major
performance bottleneck when facing large scale data cluster
ing. When k is very large, such clustering algorithms do not
scale well and have poor performance in terms of efficiency.

Motivated by this, the key challenge to be addressed in
this paper is to propose a novel clustering framework that can
scale well with a massive number of clusters, in which items
may also be high dimensional. That is, clustering a dataset
containing a large collection of high dimensional data into
a large number of clusters represented by centroids. In such
cases efficiently measuring the similarity of each item to each
cluster centroid is critical in accelerating the clustering task.

Recently, in both the research and industry communities,
increased emphasis has been placed on algorithms to mine
the abundance of data being generated, so called Big Data
analysis. One line of research to achieve this is to adapt
existing, well-understood algorithms to handle larger scale data

978-1-5090-2020-1/16/$31.00 © 2016 IEEE 649

(e.g., [4]). We follow the same line of research in this paper.
Our approach to solve this problem and improve efficiency
is to make use of locality sensitive hashing (LSH) [5]. By
utilising the LSH technique, we are able to find, for a given
item to be clustered by a centroid-based clustering algorithm,
all of the other items that have a certain similarity above a
predefined threshold. The objective is to build a hash based
index of all similar items in the dataset to be clustered, and
to utilise this index to obtain a shortlist of candidate clusters
for the centroid-based clustering algorithm to operate on for
this item. This method can eliminate dissimilar clusters before
applying existing clustering algorithms, and it significantly
accelerates the clustering process while maintaining clustering
quality, which is the key novelty of our work.

In order to present how our framework can be applied
to existing clustering approaches, we focus on the K-Modes
algorithm in this paper. K-Modes [3] is a clustering algorithm
for categorical data. We use the Jaccard similarity [6] to
compute the similarity between two categorical items, and
thus we adopt the min-wise independent permutations locality
sensitive hashing scheme (MinHash) [7], which is an LSH
scheme which approximates the Jaccard Similarity measure.
We denote the algorithm accelerated with MinHash as MH
K-Modes. K-Modes is similar to the K-Means algorithm [2]
but replaces the numeric distance calculations with a fast and
simple dissimilarity measure for categorical data. Categorical
data, sometimes also called nominal data, are variables that
typically have two or more categories. Importantly, there is no
intrinsic ordering to these category values. A simple example
of this would be the colours of items, in which a set can
have a few or many different colours, and there is no standard
ordering over a set of colours.

The K-Modes similarity measure is fast due in part to
its simplicity, however we will later show that whenever the
number of clusters in the data increase, and particularly when
the number of attributes in the data also increases (i.e. it
becomes higher dimensional), K-Modes can become extremely
slow.

To evaluate our approach, we conduct experiments on five
synthetic datasets, as well as a real world Yahoo! Answers
dataset [8]. We investigate, compare, and analyse our MH
K-Modes algorithm and the original K-Modes algorithm in
respect to a number of properties. We will analyse the time
taken per iteration, as well as the number of iterations required
for the algorithms to converge. We will also analyse the
average size of the shortlist of candidate clusters for our
algorithm, and how this varies with regard to the chosen
algorithm input parameters.

ICDE 2016 Conference

Next we will analyse the number of moves, or cluster re
assignments, per iteration of both our MH-K-Modes algorithm
and the K-Modes algorithm. Finally we will compare the total
time taken to cluster each dataset using various parameter
settings for our MH-K-Modes algorithm and the K-Modes
algorithm. Our algorithm includes an initial extra step before
the cluster algorithm begins, which will be captured by this
analysis.

The contributions of this paper are the following:

• We present a novel framework for improving the effi
ciency of existing centroid-based clustering algorithms
using LSH to greatly reduce the cluster search space.

• We apply our framework to the well-known K-Modes
algorithm and utilise the MinHash LSH algorithm.

• We prove that our method has a guaranteed error
bound.

• Through experimentation we evaluate our framework
on five synthetic datasets as well as a real world
Yahoo! Answers dataset. We show that our framework
achieves similar performance in terms of cluster purity
but most significantly is more efficient. With the
parameters tested we observe that our framework is
more efficient by factors between 2x and 6x.

II. RELATED WORK

The data clustering problem continues to have been studied
intensively in recent years, and it has been used in many
applications such as image segmentation [9]-[11], genetic
mapping [12], cOlmnunity detection [13], etc. The centroid
based clustering algorithms such as K-Means [2] and K-Modes
[3] have been widely applied due to their simplicity and easy
implementation.

As has been pointed by several existing studies, centroid
based clustering is inefficient. For example, [14] outlines the
efficiency problem with large numbers of data points and
large numbers of clusters for the K-Means algorithm. In their
approach the authors optimised the assignment of points to
cluster centres using multiple random spatial partition trees
such that only a small number of clusters need to be considered
during the assignment step of K-Means. More specifically, this
approach creates a neighbourhood for each point via a multiple
random partition trees method and uses this neighbourhood
to find the set of clusters within it. These clusters form the
candidate set which are typically smaller than the full cluster
set. Their approximate K-Means algorithm converged 2.S times
faster, and achieved better performance than the state-of-the-art
approaches they compared.

[IS] proposes the idea of canopies which represent divi
sions of overlapping subsets of the data. These canopies can
be computed quickly and is followed by a second stage that
preforms exact distance measurements among points in com
mon canopies. The concept of canopies is used to improve the
efficiency of clustering. This work supports high dimensional
data, with large numbers of clusters and data points.

[4] shows how the K-Means algorithm can be scaled up
to large vocabulary sizes in the computer vision domain. This
is achieved through the use of a random forest approximate

6S0

nearest neighbour algorithm. Similar in spirit to us, the costly
exact distance comparison between points and clusters is
replaced by an approximate measure using randomized k-d
trees.

[16] presents an updated K-Means that addresses three
core issues that have been identified for web scale clustering;
latency, scalability and sparsity. They manage to achieve a
decrease in computational cost by orders of magnitude with
the use of mini-batch clustering for K-Means.

None of the above studies consider utilising LSH to accel
erate the clustering. The min-wise independent permutations
locality sensitive hashing scheme (MinHash) is a technique for
quickly approximating the Jaccard Similarity [6] between sets.
It has been applied in numerous domains such as duplicate
web page detection for a search engine [S], online news
personalisation [17] and computer vision tasks [4].

There have been several data clustering algorithms pro
posed that use LSH in some manner. For example, the work
[18] proposes to utilise LSH in clustering web pages. In this
study, web pages are hashed in such a way that similar pages
have a much higher probability of collision than dissimilar
pages based on LSH. A graph is created for the web pages in
which each node represents a web page and each edge indicates
that the two pages are similar according to LSH. Next, a graph
partitioning algorithm is applied to divide the web pages into
different clusters. This approach is different from our work in
that we are interested in centroid based clustering algorithms,
rather than graph partitioning algorithms. Also, building the
graph is infeasible for very large datasets.

One approach [19] uses a centroid-based clustering algo
rithm K-Medoids with LSH but with the idea of developing
a locality sensitive hashing method for generic metric spaces.
The intention in this work is to improve the LSH algorithm,
rather than the clustering algorithm.

Another example [20] evaluates the use of various LSH
functions, specifically searching for high dimension SIFT
descriptors. Their approach was inspired by the challenge of
high dimensional nearest neighbour retrieval, which is a very
expensive process. The authors proposed a technique called
KLSH that makes use of the K-Means clustering algorithm.
Although the idea here is similar to ours, there are a number
of differences. First, our idea is to consider large numbers of
clusters rather than just a large number of dimensions. Second,
[20] uses K-Means clustering as a means of speeding up
nearest neighbour search of large vectors via LSH, whilst our
framework uses LSH as a means of speeding up the clustering
algorithm.

In summary, to the best of our knowledge, this is the first
work on increasing the efficiency of centroid-based clustering
by using MinHash to reduce the cluster search space.

III. LARGE SCALE CLUSTERING

A. Preliminaries of K-Modes and MinHash

1) K-Modes: In order to describe our framework, we first
introduce the K-Modes algorithm [21].

K-Modes differs from K-Means in three major ways; K
Modes uses a simple dissimilarity measure between items

rather than the least squares method; cluster centroids are
represented by modes rather than means; and it uses frequency
based updating of modes to minimise the cost function.

The K-Modes algorithm can be summarised as:

• Select k initial modes from the dataset. Numerous
methods exist for making this selection. A simple
selection method would be to choose k random items.

• For each item assign it to the closest cluster based on
the dissimilarity measure.

• Recalculate the modes of all clusters.

• Repeat the previous two steps until either no item has
changed cluster, or the cost has minimised (Equation
4).

From these steps we can expect that when there are many
items to cluster into (very large) k clusters, with each of
the items having many attributes, step 2 could become an
expensive and time consuming operation. This is due to each
of the many large items requiring comparison to each of the
many cluster centroids over many iterations.

Let X and Y be two categorical items described by m

categorical attributes. The dissimilarity measure d(X, Y) [3]
computes the total mismatches of the corresponding attribute
categories between X and Y. The fewer the mismatches, the
more similar the two items are.

where

m
d(X,Y) = L O(Xj,Yj)

j=l

if (Xj = Yj),

otherwise.

Formally we can define the K-Modes algorithm as:

(1)

(2)

Let X be a set of categorical items each with m cat
egorical attributes AI,'" , Am, where each Aj is a sin
gle attribute, e.g., 'Colour'. The domain of Aj, denoted
by DOM(Aj), contains a set of category values, i.e.,
DO M (Aj) = {aI, a2, . . . , al}. For example, given an item
Xi = {Xl,Xj,··· ,xm} EX, Xj may have the category value
'blue' for attribute colour Aj. A mode of X = {Xl,'" , Xn}
is a vector Q = [ql,' . . , qm] that minimises:

n

D(X,Q) = L d(Xi,Q) (3)
i=l

Let nC
k

•
j

be the number of items having the kth category

value Ck,j for attribute Aj and ir (Aj = ck,jIX) =
nC� ,j

the relative frequency of category Ck,j in X. The function
D (X,Q) is minimised iff ir(Aj =qjIX) 2: ir(Aj =Ck,j)
for qj i- Ck,j and all j = 1, ... , m.

Therefore, the optimisation problem for partitioning a set
of n items each with m categorical attributes into k clusters
is to minimise the following cost function:

651

k n

P(W, Q) = L L wi,lD(Xi, Ql)
l=l i=l

(4)

where W is the n x k membership matrix, Wi,l E W, and
Q = {Ql, ... ,Ql, ... ,Qk} is a set of cluster centers.

2) MinHash / Locality Sensitive Hashing: We will use
duplicate document detection, which is a common use case for
MinHash, as an example to describe how it may be applied to
our problem. Given a set of documents, we would first want
to convert each set of words in the document into 'signatures'
which will be a more compact representation of each docu
ment. These signatures are computed for each document by
'minhashing' the document a number of times. Given a word
document matrix in which each column represents a document
and each row indicates the presence/absence (1/0) of a word in
a document; 'Minhashing' would be choosing for each column,
from a permutation of the rows, the row number of the first
row which has a value 1 in that column, a process that is
typically repeated a number of times. If we do this n times,
each with a different permutation, the size of the signature
would be n. To make this practical, the random permutations
of the matrix can be simulated by the use of n randomly chosen
hash functions. Given a row r in the word-document matrix,
we use hash function hO to simulate the permutation of r to
the position h(r). For example, let r be the third row, and let a
hash function be h(x) = 2x+1 mod 5, then h(r) = 2*3+1
mod 5 = 2. r is permuted to the second row according to
this hash function. Similarly, this hash function is applied to
all rows with value 1, and the smallest hash value (also the
highest ranked row number) is chosen as the outcome of this
particular hash function. This value is denoted as Si (where
i represents it is the ith hash function used). Formally, the
signature equation can be represented as

(5)

where Si = min(hi(rj)lj = 1, t), and for i = 1, ... , n,

such that t is the number of total rows with value 1, and n is
the number of hash functions. The detailed description of the
idea can be seen in Algorithm 1.

These signatures, although likely smaller than the original
document, are only part of the solution for quickly estimating
the similarity between documents. The next step is to further
subdivide the signature produced above into rows(r) and
bands(b). Each band will consist of r hash-values, which are
input to another hash function that maps the band to a new
bucket. Importantly there will be b sets of buckets to map to,
one set for each band so no overlapping between bands can
occur. Thus we can now say that if a band from each of the
two documents map to the same bucket, they are candidate
pairs.

MinHash is known to approximate the Jaccard Similarity
between sets, and the choice of r and b have significance in
that they determine the probability that two documents with a
Jaccard Similarity (Equation 6) of S become candidate pairs.

. IX n YI Jaccard-Slm(X, Y) =
IX u YI

(6)

Specifically, the probability that the signatures are identical in
at least one band, therefore making them a candidate pair, is
l-(l-sT)b. We can exploit this in order to choose appropriate
values for r and b prior to the clustering. The similarity s at
which there is a 50% chance of two items becoming candidate
pairs, at which the rise of the s curve is the steepest, is a
function of b and r: (l/b)I/T.

Algorithm 1: SIGGEN : MINHASH S IGNATURE GENER-
ATION [7]

Input: item: a vector of categorical values from a
single item

Input: H: hash functions hI, . . . , hm E H
Output: signature: a vector of length m

1 forall i in item do
2 L hmin(i) = 00

3 forall i in item do
4 l forall j in H do
5 l if hj(i) <hm�n(j)

.
then

6 L hmin (J) - hj (t)

B. Our Algorithm MH-K-Modes

The integration of MinHash and LSH with K-Modes is
detailed in Algorithm 2. Specifically, after the centroid initial
isation step of K-Modes, we can make a single pass over the
entire dataset, applying MinHash to each item. When we insert
each item into a bucket as per MinHash procedure, we will also
store a reference to the cluster that the item has been assigned
to by K-Modes. Once this single pass over the dataset has
been completed, we will have effectively produced an index
data-structure of items to other similar items that we can query
from the K-Modes algorithm. Therefore during each iteration
of K-Modes, each time we encounter an item to assign to a
cluster, we will query our MinHash index with the item to
find the set of other similar items. Since each item contains a
reference to the cluster it is currently assigned to, we can create
a shortlist of candidate clusters for K-Modes. This is possible
as when we MinH ash the query item we will discover all the
previously MinHashed items that the LSH function regarded as
similar. From these items we retrieve their referenced clusters
to build the shortlist. Our framework relies on the assumption
(for which we will have a theoretical investigation in Section
III-C) that we can achieve similar performance in terms of
accuracy whenever the true positive (TP) cluster is in the
shortlist, along with a small number of other false positive (FP)
clusters. Once we have updated the clustering by assigning an
item to a cluster we must update the MinH ash index to reflect
this. This is a fast operation as we merely update the items
cluster that is stored via a reference or pointer.

Worth noting, as seen in Lines 2-4 of Algorithm 2, we filter
out any feature values that indicate the feature is not present
before the signature generation in Algorithm 1. This is useful
in scenarios in which each feature vector item may be large and
may contain many values that are not present. Such cases may
include when you would like to represent a vocabulary with
word presence indicated by Yes or No values. By excluding the
'No' values, MinHash is able to produce more useful similarity
scores between two feature vectors, as many shared negative

652

Fig. 1 : I IIustrating the idea of how LSH can be used to find
the relevant clusters for the red coloured point X.

features in two vectors does not provide particularly useful
information about the similarity of two sets. Usually we are
only interested in the similarity of values present in the feature
vectors.

We now present the steps of our modified MH-K-Modes
algorithm.

• Select k initial modes from the dataset. Numerous
methods exist for making this selection. A simple
selection method would be to choose k random items
from the dataset.

• For each item assign it to the closest cluster based on
the dissimilarity measure.

• MinHash each item, effectively creating an index of
similar items. In the index store a cluster reference for
each item.

• For each item query the previously generated MinHash
index for similar items and their clusters. Use these
clusters rather than the full set to assign it to the
closest cluster based on the dissimilarity measure.
After each change, update the cluster reference in the
MinHash index to the new cluster.

• Recalculate the modes of all clusters.

• Repeat the previous two steps until either no item has
changed cluster, or the cost has minimised.

Compared to the original K-Modes algorithm described in
Section III-AI, we now have a number of extra operations.
One completely new step is the initial MinHash operation that
is run only once at the beginning of the clustering process. We
have also significantly modified the step in which the similarity
of each item to existing clusters is calculated. It makes use of
the MinHash index to pre-filter the potential cluster candidates
during each iteration of the K-Modes algorithm.

C. Error Bound

Our proposed framework relies on the accurate indexing of
clusters and matching of clusters to data items being clustered.
Recall that in our method, when X is to be clustered, we first
retrieve items similar to X from the index, and then create
a shortlist of clusters from these items. We then compute

LSH
Range

C1

C9

C7

C6C4

C3

C5

C2

C8

Cluster Shortlist

C1
C2

K-Modes-Distance(X, [C1,C2])

LSH(X)

X

Algorithm 2: MINHASH PRE-FILTERING STEP

Input: item: item to be clustered
Input: H: set of hash functions
Output: shortlist Shortlist of clusters to fully search

1 filtered_presence_item = []
2 foreach feature in item as feature do
3 l if feature is present then
4 L add feature to filtered_presence_item

5 signature = SIGGEN(jiltered-presence_item, H)
6 divide signature into b bands each consisting of r hash

values.
7 buckets = setO
8 foreach b in band do
9 L add idx_hash(b) to buckets

10 shortlist = setO
11 foreach bucket in buckets do
12 L add the clusters in bucket to shortlist

the similarity between X and each cluster in the shortlist.
Therefore, if the actual cluster that X shall be clustered to
contains one item which is similar to X in the index, X
will be correctly clustered (the correctness here means that
the clustering result is the same as the original algorithm
without using the index). Therefore, the error of our method
can only occur when the candidate clusters selected for an
item do not in fact include the actual cluster that this item
shall be clustered to. In this section, we investigate theoretical
properties of this error in the clustering framework, and we
show that our method utilising MinHash has a guaranteed error
bound.

In order to analyse the error caused by the MinHash index,
we take clustering a categorical item X with m attributes as
an example. We denote en as the actual cluster X should
be clustered to (whose mode has the least dissimilarity with
X) according to the original K-Modes. We can compute the
probability that en is not in the candidate clusters list as
follows.

If en is the best cluster, then in en there must exist an
item such that it has the same values on at least one attribute
as that of X (otherwise, the dissimilarity of the mode of en
and X will be m and en is not the best cluster). Now let us
denote this item in en as Y, the Jaccard Similarity of X and Y
is at least s = '�8�' 2: 2�-1' Hence, the probability that the
signatures of X and V agree in all rows of one particular band
is at least S

T
, and the probability that the signatures disa�ree in

at least one row of each of the bands is at most (1-S
T) • This

means that the probability of X and Y not being a candidate
pair is at most Pr = (1 - sT)b = (1 - (2�-1 nb.

When clustering item X, if en is the cluster whose mode
has the least dissimilarity with X but en is not obtained from
the index, it means that no item Y' exists in en that can
form a candidate pair with X according to the index. Given
the similarity between X and Y is at least s = 2�-1' we

know that the probability of this error is at most PrlCnl =

(1- (2�_ly)bICnl, where b is the number of bands and r is
the number of rows in MinHash.

653

Therefore the error bound can be very small even when the
number of attributes is very large in the dataset. For example,
in our experiments, a common number of attributes of an item
in the datasets we used is 100. If we set r = 1 and b = 25 in
MinHash, and we assume that a cluster has at least 20 items,
the probability of the error when clustering an item in our
framework is at most PrlCnl = (1 - 1�9)25X20 = 0.08. This
explains why our framework improves clustering efficiency
significantly while maintaining excellent clustering quality.

D. Choice of LSH Parameters

In Table I we can see the relationship between the band
parameter, the Jaccard Similarity of two items, the probability
of candidate pairs using MinHash, and the probability of MH
K-Modes finding the candidate cluster. With the number of
rows set to 1, the greater the number of bands, the lower the
Jaccard Similarity needs to be for the algorithm to find two
items similar. In Table II with the number of rows set to 5,
the same trend of more bands increasing the probability of
candidate pairs being found exists. However, it is clear that
with the increased number of rows the probability of finding
two items with a Jaccard Similarity regarded as similar has
decreased compared to Table I which had only 1 row.

One possible choice is to use MinHash with just one row
and one band, which would have the effect of eliminating
clusters that are extremely unlikely to have any similarity.
Whilst with 100 bands it is possible, with 99% probability,
to find sets with a Jaccard Similarity of just 0.1 to become
candidate pairs. With 800 bands, sets with a Jaccard Similarity
an order of magnitude smaller have the same probability. The
downside of this parameter setting is that it is likely to include
many false positive clusters in the shortlist. This is overcome
by increasing the number of rows, at the cost of introducing
more false negatives in shortlist.

In Section III-A2 we discussed the probability of collisions
occurring for given Jaccard similarities, bands and rows. To
reiterate, we can calculate the probability that two items
become candidate pairs for any given combination of the
Jaccard similarity, band and row parameters. However, since
we only consider the cluster of each candidate pair when
forming the shortlist (see Lines 10-12 of Algorithm 2) we do
not need to find all item candidate pairs in order to achieve our
goal of finding cluster candidate pairs. Instead, we only need to
find just one item candidate pair from each candidate cluster.
If there is a 10% probability of two items with a Jaccard
Similarity of 0.1 becoming candidate pairs, and if there are
50 such candidate pair items in the cluster, then we have a
high probability (99%)1 that at least one of them will collide
and thus provide us with the candidate cluster. Importantly,
our application of MinHash means we can achieve much better
performance without increasing the number of hash functions
and thereby increasing computational overhead. This should
provide an intuition as to how the choice of r and b will affect
our efficiency and performance, and how the standard MinHash
selection criteria in terms of r and b need not be so strict with
our framework.

11_ (1- (0.1))50

TABLE I: Probability of finding a candidate pair with a given
Jaccard Similarity and given number of bands with a row
value of 1. MH-K-Modes probability calculated assuming a
minimum of 10 other items in the cluster with at least the
given Jaccard Similarity.

Bands Jaccard Similarity Probability MH-K-Modes Probability
10 0.01 0.09 0.61

10 0.1 0.65 I

10 0.2 0.89

10 0.5 0.99

100 0.001 0.009 0.09

100 0.01 0.3 0.97

100 0.1 0.99 I

100 0.5 I I

100 0.8

800 0.0001 0.07 0.52

800 0.001 0.55 0.99

800 0.01 0.99 I

800 0.1 I I

TABLE II: Probability of finding a candidate pair with a given
Jaccard Similarity and given number of bands with a row
value of 5. MH-K-Modes probability calculated assuming a
minimum of 10 other items in the cluster with at least the
given Jaccard Similarity.

Bands Jaccard Similarity Probability MH-K-Modes Probability
10 0.1 0.0001 0.001

10 0.2 0.003 0.03

10 0.5 0.27 0.96

10 0.8 0.98

100 0.1 0.001 0.01

100 0.5 0.95 I

800 0.1 0.008 0.08

800 0.2 0.23 0.93

800 0.3 0.86 I

IV. EXPERIMENTATION

We will now provide experimental evidence of the effec
tiveness of our framework MH-K-Modes, in comparison to
regular K-Modes, on a number of datasets. To make it easier
to clearly analyse the properties of our framework, we will
first provide our analysis on a number of synthetic datasets.
Following this we will provide results on a dataset consisting
of questions and topics from Yahoo! Answers [8] in order to
demonstrate real-world effectiveness. For each dataset we hope
to show that our algorithm will improve the efficiency of K
Modes algorithm, while maintaining comparable performance.

Our experimentation was carried out on machines with an
Intel X5650 CPU and 96GB of RAM. Our implementation
was single threaded and thus only used one of the available
twelve cores on the machine. The programming language used
for both the K-Modes and MH-K-Modes algorithm is Python
and made heavy use of the numpy package2 for numerical
computations.

A. Results on Synthetic Data

Our synthetic datasets were generated with the datgen
tool3. For all experiments we used a domain size of 40000

2http://www.numpy.org/

654

categorical values which can be used by each attribute when
generating the dataset. Each item will be associated with one of
the k clusters. This association is decided in the form of con
junctive rules formed from the attributes. For example, cluster
1 could require attribute Al having the categorical value A
and attribute A4 having the categorical value B, etc. Therefore
when creating an item that belongs to cluster 1, attributes
Al and A4 would have the above values. The remaining
attributes may be any other values. For our base experiments
consisting of 100 attributes each item used a conjunctive rule
involving between 40 and 80 attributes when creating data
items for clusters. The remaining 20 to 60 attributes were not
relevant to the cluster assignment. For experiments in which
the number of attributes were increased, these values were
scaled in proportion to the number of attributes in the larger
items.

K-Modes has a number of potential initialisation methods
for choosing the initial cluster centroids [3] [22]. As the
objective of our work is to improve the clustering efficiency by
optimising the item assignment process during each iteration,
we will randomly select the k initial centroids. We note that for
each experiment in which we are evaluating various parameters
of our MH-K-Modes algorithm and the K-Modes algorithm,
the same initial centroid points were selected. This prevents
the initial centroid selection from influencing the performance
and efficiency results.

1) Varying Number of Clusters: One of the most impor
tant parameters in validating how our algorithm scales is by
exploring how it performs with data sets consisting of large
numbers of clusters. As our algorithm is designed such that it
reduces the cluster search space using LSH, we expect to find a
significantly smaller number of clusters on the shortlist for K
Modes to use. Indeed this is clearly seen in Figure 2b in which
consistently less clusters are included in the shortlist with all
parameters tested on the MH-K-Modes algorithm. We expect a
correlation between the number of clusters on the shortlist, and
the time taken for each iteration of K-Modes. This expectation
is confirmed in Figure 2a; all of our tested parameters resulted
in less time spent per iteration. The parameters 20 bands
and 5 rows appears to be the optimal tested whilst 50 bands
and 5 rows offers almost no improvement in the average
cluster shortlist size, despite the increased number of hash
functions and therefore total time required to cluster (Figure
7a). This can be seen in Figure 2e. In Figure 2c we can see
the number of times that an item was moved from one cluster
to another during the K-Modes assignment steps. The trend
here continues, the optimal value of 20 bands and 5 rows
results in the least number of moves. Finally, the experiments
also reveal in Figure 7a that not only does our MH-K-Modes
algorithm always result in less time per iteration, in all tested
cases it converged faster, resulting in less overall iterations.
The best result was MH-K-Modes with 20 bands and 5 rows
taking under 225 minutes per iteration, and converging after
5 iterations. This is in comparison to the original K-Modes
which took around 380 minutes per iteration, and converged
after 12 iterations.

3http ://www.datasetgenerator.com/source/

Fig. 2: 90000 items with 100 attributes and 20000 clusters.

We have achieved promising results so far since the effi
ciency of our MH-K-Modes algorithm is significantly better
than that of the K-Modes algorithm with 20 thousand clusters.
Our next experiment will run with the same parameter settings,
but with twice as many clusters. In Figure 3a we can see a sim
ilar trend to the previous experiment. All our tested parameters
resulted in a less time per iteration. In this case, the time per
iteration difference between our MH-K-Modes algorithm and
the original K-Modes algorithm is more significant. We can see
that previously we reduced the time taken per iteration from
around 380 minutes to around 220 minutes. In Figure 3a the
time is reduced from around 780 minutes (after 4 iterations)
to just over 300 minutes. This is an improvement of around
480 minutes per iteration with 40 thousand clusters, compared
to 160 minutes per iteration with 20 thousand clusters. Figure
3b provides a clearer picture of the time taken per iteration,
by excluding the original K-Modes algorithm. One interesting
observation is that the parameter combination of 20 bands
and 5 rows appears to be an outlier when compared to the
others as it takes around 380 minutes per iteration, as opposed
to 315 minutes. Nonetheless, it manages to converge in the
smallest number of iterations, just 4. This shows that while
time per iteration is important, so is the number of iterations
before converging. Both Figure 2 and Figure 3 illustrates that
our algorithm with large numbers of clusters is more efficient
in both time per iteration and number of iterations before
converging than the original K-Modes algorithm.

2) Varying Number of Items: The next aspect of our MH
K-Modes algorithm we would like to evaluate is how much
more efficient our algorithm is when it comes to increasing the

655

number of items in the dataset. As our algorithm is designed to
reduce the cluster search space, it is reasonable to assume that
the more items there are to be clustered, the more time that
will be saved overall as each item will make a time saving .

In order to investigate the effect of increasing the number
of items on the efficiency of our algorithm, we generated
a synthetic dataset consisting of 250 thousand items. We
maintained 20 thousand clusters and 100 attributes as before.
Figure 4 shows the results of this experiment. In Figure 4c
it is clear that as we increased the number of items to be
clustered, the total time taken per iteration increased. However,
we can still see that our MH-K-Modes algorithm resulted in
less iterations and less time per iteration. With 20 bands and
5 rows, our algorithm converged after 8 iterations, compared
to the original K-Modes with 10 iterations. Our algorithm also
took much less time per iteration, around 800 minutes until the
sixth iteration, followed by around 1100 minutes per iteration
for the final two iterations. On the other hand the original
K-Modes algorithm took almost 1600 minutes per iterations
consistently for 10 iterations. Accounting for the jump in time
per iteration for our algorithm after 6 iterations, we still see
an improvement of between 800 minutes (or 50%) and 500
minutes for each iteration. Figure 4a and Figure 4b exhibit the
same trend as witnessed with 90 thousand items. In Figure 6a
we plot the rate of growth in time taken for the K-Modes and
MH-K-Modes algorithms to cluster both 90000 and 250000
items. It is clear from this that our algorithm scales more
efficiently with regard to dataset size than the original K
Modes algorithm.

3) Varying Number of Attributes: We will now investigate
the performance and efficiency of our algorithm when the num
ber of attributes in the dataset is increased. Higher dimensional
data is typically associated with increased complexity and
running time as each item and centroid is much larger. Specif
ically we will report and analyse the results with 90000 items,
20000 clusters and 100, 200 and 400 attributes respectively. We
expect that our framework will see improvements in efficiency
as the number of attributes increase because each comparison
will require more computation within the dissimilarity function
(Equation 1 and Equation 2).

In Figure 5a our results reveal that with the increased
number of attributes, doubled from 100 to 200, we maintain
significant efficiency gains. Our best parameter selection for
MH-K-Modes converged 101 hours faster than K-Modes with
100 attributes, and 104 hours faster with 200 attributes. With
400 attributes, Figure 6c displays an even greater increase in
efficiency when comparing our algorithm with the original K
Modes algorithm. We will discuss the scaling aspect in more
detail in Section IV-A4. Figure 5b also reinforces that our
algorithm can significantly reduce the cluster search space, as
the candidate cluster shortlist is consistently much smaller than
the full search space by many orders of magnitude.

4) Synthetic Data Scaling Comparison: In previous sec
tions we have analysed a number of properties of the two
algorithms when varying various parameters of the datasets
and algorithms. For the sake of clarity, we will also show and
discuss how each of the algorithms scale in terms of efficiency
with respect to the number of clusters, attributes and items.

In Figure 6a we show how, while both our MH-K-Modes

algorithm and the original K-Modes algorithm grow almost
linearly with the number of items, our algorithm has a slower
rate of growth than that of K-Modes. This aligns with our
expectations as each item will have a time saving from using
the cluster shortlist, and this time saving accumulate with the
number of items, contributing to the total time saving.

In Figure 6b it is clear that when we increase the number
of clusters from 20000 to 40000 with 250000 items of data
we see a much smaller rate of growth than the original K
Modes algorithm. In fact, our algorithm is able to cluster the
dataset with 40000 clusters over 1.5 times faster than K-Modes
clustering the dataset consisting of 20000 clusters, and over 2.5
times faster than K-Modes clustering the 40000 cluster dataset.

With higher dimensional data Figure 6c reveals that MH
K-Modes scales at a much better rate than the original K
Modes algorithm. Specifically, the increase from 200 attributes
to 400 attributes resulted in our algorithm only taking an
extra 8 hours (36 to 44 hours), while the original K-Modes

656

algorithm required an extra 72 hours (140 to 212 hours).
Again, these results confirm how efficient our algorithm is. By
increasing the number of attributes, MH-K-Modes achieves a
greater time saving per item comparison when compared to
lower dimensional data. Therefore as the data becomes higher
dimensional, even when the candidate cluster shortlist size
remains the same, we can expect greater efficiency savings.

5) Cluster Purity: For each experiment on the synthetic
datasets we also calculated the total cluster purity, as shown
in Figure 8. It is clear that in nearly all cases, our algorithm
manages to achieve very similar cluster purity to the original
K-Modes. This is a trade-off that is made for the increased
efficiency in clustering.

B. Results on Real Dataset: Yahoo! Answers

We will now validate our framework and algorithm on a
real world dataset. Yahoo! Answers is a popular web service in
which users are able to ask questions and receive answers from
other members of the community. When asking questions users
are able to select the topic they believe best describes their
question. These topics can be fine-grained and very specific
to the question asked. It is the set of these topics that we
will use as the ground truth for evaluation of our clustering.
The objective of the clustering is: using the words of each
question, group questions of the same topic together. In order
to model this in a suitable format for categorical clustering,
we will create a vocabulary of potential words, with each
attribute value chosen from the set {Yes, No}. This will
indicate whether or not this word was present in the question.

1) TF-IDF: To achieve reasonable results, we must first
try and learn the important words from each topic. TF-IDF

300
r;=_=M=H =.K =.M =0=de= S =2 =Ob =s=;r ------, 500

r;=_=M=H=.K=.M=0=d=es=2= Ob=s=;r'-----, 250
....... MH-K-Modes 20b S

r

250 L-_____ -'

200

150

450 _ K-Modes
400

350

300

250

40000

200

150

100

50

a 100 200 400
Num. items Num. clusters (250k items) Num. items

(a) Scaling items (b) Scaling clusters (C) Scaling attributes

Fig. 6: Comparison of how our MH-K-Modes algorithm and K-Modes scale .

..

� � �
� � �
� � �

(a) 90000 items, 100 attributes and 20000
clusters

(b) 90000 items, 200 attributes and 20000
clusters

(c) 90000 items, 400 attributes and 20000
clusters

..

!
�
�

(d) 90000 items, 100 attributes and 40000
clusters

..

!
�
�

(e) 250000 items, 100 attributes and 20000
clusters

Fig. 7: Total time taken to cluster each synthetic dataset

[23] (Term Frequency - Inverse Document Frequency) is a
common weighting algorithm in text mining for statistically
estimating the importance of words to a document from a
collection of documents. The algorithm first calculates the
frequency of each word in a single document as the initial
step in calculating the significance of it The second step of
the algorithm is to calculate the 'inverse document frequency'
which penalises words that occur in many documents and gives
more significance to words that are rare across documents.
The usefulness of this approach is clear when you consider a
typical question asked on Yahoo! Answers. The following is
a real example: "im interested in being a zoologist but im not
sure what do they really do.Does zoologist work only in zoo?"

If we wish to assign this question to a topic 'Zoology',
it is clear that most words would not be usefuL We would
expect words such as 'zoologist' and 'zoo' would be frequently

657

occurring in the 'zoology' topic, while the rest of the question
consists of words that would be frequent across many topics.
Therefore we expect that they would be given a low score by
the 'inverse document frequency' step of TF-IDF, leaving only
the important words 'zoologist' and 'zoo' with high scores.

More formally we can state IDF as

(7)

where ti is the term we wish to calculate the importance of, N
is the number of documents and ni is the number of documents
that ti occurs in.

We will validate our framework on the Yahoo! Answers
question dataset using the vocabulary of meaningful words
extracted using TF-IDF for each topic. Each question is

MinHash l b l r 1 1 run

MinHash 20b Sr

MinHash SOb Sr

Norma l / l run

(a) 90000 items, 100 attributes and 20000
clusters

(b) 90000 items, 200 attributes and 20000
clusters

(c) 90000 items, 400 attributes and 20000
clusters

(d) 90000 items, 100 attributes and 40000
clusters

(e) 250000 items, 100 attributes and 20000
clusters

Fig. 8: Comparison of cluster purity scores on the synthetic datasets.

represented as a feature vector, in which each feature is a
binary indicator of the presence of the word in the question.
The length of the feature vectors will be the size of our
vocabulary. It is expected that each feature vector will be
sparse, consisting mostly of negative binary indicators as each
question will usually consist of only a few words out of
the entire vocabulary. As our MinHash step does not take
ordering of attributes into account we must augment each
binary indicator with the name of the feature. That is, the
value for the feature 'zoo' will become either 'zoo-O' or 'zoo
l' dependant on if it is present in the question.

For our first experiment on this dataset we extracted up to
100 questions from each of the 2916 topics. This gave us a
total of 81036 items from the dataset to cluster. TF-IDF was
used to extract the meaningful words from each topic, using up
to 10000 words from each topic, and any word with a score
over 0.7 was chosen to be included in the vocabulary. This
resulted in each item consisting of 382 attributes. We must
note that by using TF-IDF, and with a high threshold of 0.7,
we are reducing the potential efficiency gains of our approach.
As shown in Section IV-A3, greater numbers of attributes
results in greater efficiency improvement with our algorithm.
However, we chose to include the TF-IDF pre-processing step
as performance in terms of cluster purity was poor without
it, and we would like to make this experiment as realistic as
possible.

Results from this experiment can be seen in Figure 9.
The trends displayed are similar to those from the experi
ments on the synthetic datasets. Figure 9a clearly shows the
improvements in the time taken per iteration, with our MH
K-Modes algorithm around 1.8 hours, compared to 3 hours

658

for the original K-Modes algorithm. We also note that our
algorithm converged after just 4 iterations, one iteration less
than K-Modes. Figure 9b confirms our original motivation
that our framework can create a shortlist of candidate clusters
which is much smaller than the full set of all clusters, while
the results of Figure 9c follows a familiar trend in that our
framework typically requires less movement of points between
clusters during each iteration. Crucially, Figure 9d confirms
that our framework is able to cluster the dataset faster than
the K-Modes algorithm. MH-K-Modes was able to cluster our
Yahoo! Answers dataset in half as much time as that required
by the K-Modes algorithm. Figure ge reveals that it was able
to maintain almost exactly the same cluster purity, despite the
significant increase in time savings.

We will now investigate how our algorithm MH-K-Modes
and K-Modes will perform when we lower the TF-IDF scoring
threshold, increasing the number of attributes each item has. As
a result of lowering the threshold from 0.7 to 0.3, the number
of attributes in each item increased from 382 to 2881. There
are 157602 items to cluster in total with 2916 clusters.

In Figure l O we can see a similar trend as before, our
algorithm requires significantly less time per iteration. Due
to time constraints we set the maximum iterations to 10. In
Figure l Oc we see the now familiar trend of our framework
creating a candidate cluster shortlist significantly smaller than
the full set of clusters. This is a key reason for the efficiency
gains of our algorithm. Figure 10d exhibits again the trend
of our algorithm typically requiring less moves during each
iterations assignment step. The overall time taken for each
parameter combination of our MH-K-Modes algorithm, as well
as the original K-Modes algorithm is evident in Figure l Ob.

3. 2 3000F==========� 3.0
7000 0

2.8

2.'

2.4 I MH-K-Modes Ib 1r l _ K-Modes
2. 2

2.0

1. 8

2500
2000
1500
1000
500 MH-K-Modes I b 1 r l

6900
'000

� 6700
:::E 6600

6500
6400

0
0
0 I � MH-K-Modes Ib lr I:
0 K-Modes

:l---
1. •

..... K-Modes I 1�.o �1':".5 �2"::'.O �2':".5 �3';;'.O �37.5 �4';;-.O ----'47.5 ----}5.0 6300 0
U U U U U U U U U

Iteration U U W � U U U U U

Iteration

Iteration

(a) Iteration time
(b) Average shortlist size (c) Average moves

, O. 5

4 c::::J MH-K-Modes I b 1 r l
c::::J K-Modes

I � MH-K-Modes Ib lr

c::J K-Modes O. 4 2
0 3
8

,
2

4 O. 1
2
0 O. 0

(d) Total time taken (e) Cluster purity

Fig. 9: Yahoo ! Answers questions with 0.7 TF-IDF terms.

Here we can see that just 1 band and 1 row achieved the
most efficient clustering, almost twice as fast as the original
K-Modes algorithm, with around 200 hours compared to
almost 400 hours. We expect that we would have found larger
efficiency savings if we had not set the maximum iterations to
10, as both algorithms reached the threshold, but our MH-K
Modes algorithm appeared to be converging (Figure l Od). As
we have shown before, our algorithm almost always converges
faster than the original K-Modes algorithm.

2) Cluster Purity: As before, we also evaluated the purity
of the resulting clusters found by both algorithms when clus
tering the Yahoo! Answers questions dataset created with the
TF-IDF threshold set to 0.7. Figure ge shows that we are able
to achieve exactly the same cluster purity as the original K
Modes algorithm, even with the increased efficiency of taking
just half the running time. We do note however that the cluster
purity is quite low at just 25%. We believe this is due not
just to the difficulty of the problem, but also the fine-grained
topic assignments of the data. With such a large number of
very specific topics, it is to be expected that it will not be
always straightforward for the algorithms to find the correct
cluster out of a number of similar clusters. Furthermore, the
topic assignments being user editable also makes establishing
a proper and accurate ground truth clustering very difficult,
as users can mistakenly choose the non-optimal topic for their
question. Manually checking the question to topic assignments
in the original data confirm this.

V. CONCLUSION

In this paper we proposed a framework for improving clus
tering efficiency for larger scale data by integration of LSH as
a cluster search space reduction method. This framework had

659

the objective of decreasing the number of distance comparisons
by reducing the cluster search space for each item during the
assignment step. We discussed how this framework could be
used with the well-known K-Modes algorithm.

We also theoretically showed that our framework has a
guaranteed error bound in terms of the clustering quality
relative to the original clustering algorithm that must use the
full cluster search space.

Finally we validated our framework by testing the effi
ciency and performance of both our MH-K-Modes algorithm
and the original K-Modes algorithm on five synthetic datasets,
as well as a real world Yahoo! Answers dataset. These exper
iments empirically proved the effectiveness of our framework
for improving the efficiency of clustering large datasets which
contain many clusters and attributes. We discovered both
empirically and theoretically that we could achieve comparable
cluster purity, but most importantly, in all tested parameter
combinations and settings our algorithm MH-K-Modes was
more efficient, successfully clustering the dataset at least 2
times faster and up to 6 times faster.

V I. FURTHER W ORK

While our framework was implemented on the K-Modes
clustering algorithm, evaluation on the performance and effi
ciency with other clustering algorithms would be worthwhile.
Further, it would be interesting to investigate extending our
framework to work with not only categorical data, but also
numeric data, or combinations of both. Finally, adapting our
algorithm to develop an online/stream clustering framework
would be another exciting future research topic.

Fig. 10 : Yahoo ! Answers questions with 0 .3 TF-IDF terms
(maximum of 10 iterations).

REFERENCES

[l] A. K. Jain, "Data Clustering: 50 Years Beyond K-Means," Pattern
recognition letters, vol. 3 1 , no. 8, pp. 651-666, 2010 .

[2] 1. B . MacQueen, "Some Methods for Classification and Analysis of
Multivariate Observations," in Proceedings of the 5th Berkeley Sym
posium on Mathematical Statistics and Probability, vol. 1 , 1967, pp.
281-297.

660

[3] Z. Huang, "Extensions to the k-Means Algorithm for Clustering Large
Data Sets with Categorical Values," Data Mining and Knowledge
Discovery, vol. 2, no. 3, pp. 283-304, 1998.

[4] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, "Object
retrieval with large vocabularies and fast spatial matching;' Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2007 .

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, "Syntactic
clustering of the Web," Computer Networks and ISDN Systems, vol. 29,
pp. 1 1 57-1 1 66, 1997.

[6] P. Jaccard, "Etude comparative de la distribution tlorale dans une portion
des Alpes et des Jura," Bulletin del la Societe Vaudoise des Sciences
Naturelles, vol. 37, pp. 547-579, 190 1 .

[7] A . Z. Broder, "On the resemblance and containment o f documents," in
Proceedings of the Compression and Complexity of Sequences 1 997, ser.
SEQUENCES '97. Washington, DC, USA: IEEE Computer Society,
1997, pp. 21-29.

[8]

[9]

[10]

[1 1]

[12]

[1 3]

[14]

[I S]

"Yahoo ! Answers Comprehensive Questions and Answers version 1 .0 ."
[Online] . Available: https:llwebscope.sandbox.yahoo.comlcatalog.php?
datatype=1

J. Shi and 1. Malik, "Normalized Cuts and Image Segmentation," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 8 , pp. 888-905, 2000 .

S. Varadarajan, H. Wang, P. Miller, and H. Zhou, "Fast convergence of
regularised Region-based Mixture of Gaussians for dynamic background
modelling," Computer Vision and Image Understanding, 20 1 5 .

S . Varadarajan, P. Miller, and H. Zhou, "Region-based Mixture of
Gaussians modelling for foreground detection in dynamic scenes,"
Pattern Recognition, 20 1 5 .

J. Cheema and J. Dicks, "Computational approaches and software tools
for genetic linkage map estimation in plants," Briefings in Bioinformat
ics, vol. 10 , no. 6, pp. 595-608, 2009.

M. Newman, "Modularity and community structure in networks," Pro
ceedings of the National Academy of Sciences of the United States of
America, vol. 103 , no. 23, pp. 8577-82, 2006 .

J. Wang, J. Wang, Q. Ke, G. Zeng, and S. Li, "Fast Approximate K
Means via Cluster Closures," in Multimedia Data Mining and Analytics.
Springer, 201 3 , pp. 373-395.

A. McCallum, K. Nigam, and L. H. Ungar, "Efficient Clustering of
High-Dimensional Data Sets with Application to Reference Matching,"
Proceedings of the 6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 169-178, 2000 .

[16] D. Sculley, "Web-scale k-means clustering," in Proceedings of the 19th
international conference on World Wide Web, 20 10 , p. 1 177.

[17] A. S . Das, M. Datar, A. Garg, and S . Rajaram, "Google news person
alization: scalable online collaborative filtering," in Proceedings of the
1 6th international conference on World Wide Web. ACM, 2007, pp.
27 1-280.

[1 8] T. Haveliwala, A. Gionis, and P. Indyk, "Scalable Techniques for
Clustering the Web," Third International Workshop on the Web and
Databases (WebDB 2000), pp. 1 29-1 34, 2000 .

[19] E. S. Silva and E. Valle, "K-medoids LSH : a new locality sensitive
hashing in general metric space," Brazilian Symposium on Database,
pp. 1-6, 201 3 .

[20] L. Paul eve, H. Jegou, and L. Amsaleg, "Locality sensitive hashing: A
comparison of hash function types and querying mechanisms," Pattern
Recognition Letters, vol. 3 1 , pp. 1 348-1358 , 2010 .

[2 1] Z. Huang and M. K. Ng, "A fuzzy k-modes algorithm for clustering
categorical data," IEEE Transactions on Fuzzy Systems, vol. 7, no. 4,
pp. 446-452, 1 999.

[22] F. Cao, J. Liang, and L. Bai, "A new initialization method for categorical
data clustering," Expert Systems with Applications, vol. 36, no. 7, pp.
10 223-10 228, 2009.

[23] G. Salton and M. McGill, Introduction to Modern Information Retrieval,
McGraw-Hili, Ed., 1988 .

