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ABSTRACT

Traditionally, the vision community has devised algorithms
to estimate the distance between an original image and im-
ages that have been subject to perturbations. Inspiration was
usually taken from the human visual perceptual system and
how the system processes different perturbations in order to
replicate to what extent it determines our ability to judge im-
age quality. While recent works have presented deep neu-
ral networks trained to predict human perceptual quality, very
few borrow any intuitions from the human visual system. To
address this, we present PerceptNet, a convolutional neural
network where the architecture has been chosen to reflect the
structure and various stages in the human visual system. We
evaluate PerceptNet on various traditional perception datasets
and note strong performance on a number of them as com-
pared with traditional image quality metrics. We also show
that including a nonlinearity inspired by the human visual
system in classical deep neural networks architectures can in-
crease their ability to judge perceptual similarity. Compared
to similar deep learning methods, the performance is similar,
although our network has a number of parameters that is sev-
eral orders of magnitude less.

Index Terms— perceptual distance, human visual sys-
tem, neural networks

1. INTRODUCTION

The human visual system’s ability to compare images through
a variety perturbations is still unparalleled. Within machine
learning and computer vision, perception has become increas-
ingly relevant, and many metrics have attempted to capture
characteristics of the human perceptual system in order to
replicate the ability to perceive differences between images.
Despite being a well established field, an often overlooked
aspect is where the foundations of image processing origi-
nate; the human visual perceptual system. In the past, sub-
jective image quality metrics were proposed following two
principles: the visibility of errors derived from psychophysi-
cal models [1–4], or the preservation of perceptual structural
similarity as in SSIM and variants [5–7]. More recent efforts
has been focused on training neural networks to distinguish

between patches of images [8]. Although these networks are
shown to be successful in datasets containing a wide variety
of perturbations, the network structure takes no inspiration
from the human visual system. These networks also contain
millions of parameters and are often difficult to interpret. In
fact, recently it has been shown that blind fitting of architec-
tures which are not properly constrained may lead to failures
in reproducing fundamental perceptual phenomena [9, 10].

We propose combining the recent methodologies from
deep learning approaches and traditional image quality met-
rics by constructing a distance where the architecture takes
inspiration from what we understand about the human vi-
sual system. In this paper we present PerceptNet, a carefully
constructed network that has been trained on a limited set of
perturbations and has an ability to generalise to perturbations
in other datasets. PerceptNet outperforms classical measures
and in traditional image quality databases and performs simi-
larly to deep learning measures despite having two orders of
magnitude less parameters.

2. RELATED WORK

Image quality metrics (IQMs) have long been relying on our
understanding of the human visual perceptual system. Meth-
ods based on assessing the visibility of errors apply models
of the psychophysical response to the original image and to
the distorted image, and then compute Euclidean distances in
the transformed domain. These response models have always
been cascades of linear+nonlinear layers, mainly wavelet-like
filters followed by divisive normalisation saturations. The
difference between old implementations of this idea [1–4]
and newer ones [11, 12] is the biological sophistication of the
models and the way they are optimised. Models based on
structural similarity such as SSIM [13] and its variants MS-
SSIM and FSIM [5, 7] check the integrity of the statistics of
the distorted image. However, it has been shown error visi-
bility models may be as adaptive as structural similarity [4].
Therefore, current versions of error visibility models based
on normalised laplacian pyramids (NLAPD) [11, 14] clearly
outperform structural similarity methods whilst also shown to
be effective at enforcing perceptual quality in image gener-
ation [15]. The linear+divisive normalisation layer can also
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be formulated as a convolutional+nonlinear layer in CNNs,
called Generalised Divisive Normalisation (GDN) [16].

A perceptual distance that is often used in the deep learn-
ing literature is the Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [8]. LPIPS utilises architectures trained to
classify images on ImageNet [17] as feature extractors. A
weighted importance vector is learned and a combination
of spatial average and `2 distance is used to compute the
perceptual distance. An alternative is to train using ran-
dom initialisations and the Berkeley-Adobe Perceptual Patch
Similarity (BAPPS) dataset. BAPPS contains traditional per-
ceptual distortions, convolution-based perturbations and a
combination of both. In traditional human judgement ex-
periments, the observer is presented with an original image
and two distorted images and is asked to select the distorted
image that is most similar with the original. BAPPS contains
only the fractional preference for each combination of two
images and, as such, the distance output from the networks
must be transformed into a preference score. A network G
containing two fully connected layers is used, which takes as
input the distances from the original to both distorted images
and outputs a predicted preference. Interestingly, it is known
that convolution neural networks trained on ImageNet have a
texture bias which contradicts what we know about the hu-
man visual perceptual system [9]. Similar departures from the
desired perceptual behaviour have been also reported when
the training set is not appropriate and the architecture is not
properly constrained [10].

3. A PERCEPTUALLY CONSTRAINED
ARCHITECTURE

To address the aforementioned shortcomings of current deep
learning approaches, we devise an architecture, PerceptNet,
for our proposed networks following the program suggested
in [18]: a cascade of canonical linear filters + divisive nor-
malisation layers that perform a series of perceptual opera-
tions in turn simulating the retina - LGN - V1 cortex path-
way [12].

The architecture is depicted in Fig. 1. Firstly, we use
GDN to learn Weber-like saturation [19] at the RGB retina.
Then, we learn a linear transformation to an opponent colour
space, analogue to the achromatic, red-green, yellow-blue
colour representation in humans [19]. This linear transform
is subsequently normalised again using GDN to learn a chro-
matic adaption process similar to Von-Kries [20]. Afterwards,
spatial convolutions are allowed to learn center-surround fil-
ters as in LGN [21], which are known to have nonlinear
GDN-like behaviour [3, 11, 12]. Finally, we include a new
convolution+GDN stage to account for the wavelet-like fil-
ters at V1 cortex and the divisive normalisation [4, 22]. This
domain replicates the representation at the end of the primary
visual cortex, where most of the information is contained in
various orientation sensitive edge detectors whilst preserving
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Fig. 1: A diagram displaying the structure of PerceptNet.
Each stage has a corresponding process in the human visual
system: gamma correction −→ opponent colour space −→ Von
Kries transform−→ center-surround filters−→ LGN normalisa-
tion −→ Orientation sensitive and multiscale in V1−→ divisive
normalisation in V1. (a×a) denotes the filter size used. gdn1
is applied independent to each channel.

a map of spatial information.
The network is trained to maximise the Pearson correla-

tion, ρ, between the mean opinion score (MOS) and the `2
distance of the two images in the transformed domain:

max
f

ρ(‖f(x)− f(d(x))‖2 , y), (1)

where f(x) is the transformation of the network (from RBG
space to the more informative perceptual space), x is the ref-
erence image, d(x) is the distorted image and y is the corre-
sponding MOS calculated from human observer experiments.

A number of properties are recognisable in the way that
humans process images; one being a focus on medium fre-
quency in the receptive field [3]. The contrast sensitivity func-
tion of the spatial standard observer (SSO) models this be-
haviour. The SSO model is used to judge perceptual dis-
tance between two contrast patterns and tends to also focus on
medium frequencies as a result. Our network captures these
characteristics as they are intrinsically linked to judging hu-
man perceptual distance.

4. EXPERIMENTS

It is our aim to find a representation that informs us of the
overall perceptual quality, generalising to distortions not
seen during the training phase. To this end, we use the
TID2008 [23] dataset for training. It contains 17 distor-
tions, with 1428 distorted images and corresponding MOS.
Our code and models are publicly available 1. We evaluate
the network on multiple perceptual datasets; TID2013 [24],
CSIQ [25], LIVE [26] and BAPPS [8]. A simple descrip-
tion of the datasets can be seen in Table 1. Both TID2013
and BAPPS contain distortions that are not present in the

1https://github.com/alexhepburn/perceptnet

https://github.com/alexhepburn/perceptnet


TID2008 dataset. The BAPPS dataset is slightly different
in that it does not report MOS. The dataset also contains
interesting distortions such as convolutional neural network
(CNN) based distortions, while the test set contains distor-
tions that are made using other deep learning algorithms, such
as super-resolution, video deblurring and colourisation.

We will be comparing PerceptNet with several base-
lines, namely, the `2 distance between reference and dis-
torted image, traditional IQMs like SSIM [6], FSIM [7] and
MSSIM [5]. We also compare against the NLAPD proposed
in [11], but we replace the divisive normalisation step and
each stage in the pyramid with a generalised divisive nor-
malisation process, where the parameters are optimised using
the TID2008 dataset. The main reference algorithm for deep
learning architectures is the LPIPS measure proposed in [8].
Zhang et al. found that LPIPS AlexNet initialised from
scratch trained on the BAPPS dataset performed best on the
BAPPS test subset. For LPIPS measures, scratch denotes
that the network was trained from random initialisation, and
tune indicates that the network was pretrained on a dataset
and fine-tuned to the BAPPS dataset. We also train AlexNet
on perceptual datasets as a feature extractor. Importantly, it
should be noted that LPIPS AlexNet requires 24.7m param-
eters whereas PerceptNet has 36.3k parameters. ImageNet
contains millions of images compared to traditional percep-
tual datasets, which usually have thousands or hundreds of
examples. When we train AlexNet on the traditional percep-
tual datasets such as TID2008, we use the feature extractor
section of the network and disregard the classification sec-
tion. We train the network using the same correlation loss in
Eq. 1. When comparing with LPIPS, it is important to provide
comparisons using the test subset of the dataset it was trained
on – the BAPPS dataset. Although the LPIPS measures are
trained using theG network that transforms two distances to a
fractional preference, when evaluating the measure, only the
main network is used. One measure for evaluating IQMs is
two-alternative forced choice (2AFC). This is the percentage
of images where the image closest in distance to the reference
using the specific measure agrees with the majority of human
voters.

Dataset
Number of
Samples

Number of
Distortions

TID2008 [23] Train 1428 17
TID2008 [23] Test 272 17
TID2013 [24] 3000 24
CSIQ [25] 899 6
LIVE [26] 982 5
BAPPS [8] Train 151.4k 425
BAPPS [8] Test 36.3k 425+

Table 1: An overview of the datasets used in the paper.

Table 2 contains Pearson and Spearman correlations be-

(a) Channel 88 (b) Channel 64

Fig. 2: Receptive field in the Fourier domain for channels that
maximise `2 distance between reference and an achromatic
version JPEG2000 transmission error distorted image (from
Fig. 3).

tween MOS and distance measures on various datasets. The
higher the correlations, the more aligned the distance is to
how humans judge the distorted images. PerceptNet outper-
forms all algorithms, including AlexNet with ReLU or GDN
on the TID2008 Test and LIVE datasets. AlexNet is the best
performing algorithm on a dataset with unseen distortions,
such as TID2013 but the number of parameters in AlexNet
is two orders of magnitude greater than PerceptNet. The net-
works trained using BAPPS (LPIPS and PerceptNet tune and
scratch) perform similar to traditional IQMs. Replacing the
ReLU activation with GDN layers in AlexNet improves cor-
relations on the TID2008 Test and LIVE datasets.

Table 3 contains 2AFC scores for combinations of net-
works and datasets. Networks trained on perceptual datasets
perform poorly on the BAPPS dataset and networks trained on
the BAPPS dataset perform poorly on the perceptual datasets
containing less distortions (table 2). Training AlexNet and
PerceptNet on TID2008, and evaluating on BAPPS, leads to
similar results despite AlexNet having a larger number of
parameters. Using LPIPS but replacing AlexNet with Per-
ceptNet leads to slightly worse, but still similar performance,
when the pretrained networks tuned on BAPPS. Training
from scratch on BAPPS, PerceptNet outperforms AlexNet it
is able to better generalise to other perceptual datasets.

Fig. 3 shows an example of the output from PerceptNet
for a reference and distorted image. Each channel has been
scaled to the domain [0, 255]. The main difference between
the channels are where the distortions have taken place. Fig. 2
shows the receptive field in the Fourier domain for the corre-
sponding channels (88 and 64). The fields resemble the Con-
trast Sensitivity Function of the Spatial Standard Observe in
that the channels focus on the mid-frequencies, where humans
have maximum sensitivity [3].

5. CONCLUSION

We describe a transformation inspired by various stages in
the human visual perceptual system that can accurately pre-



Method Trained
On

Pearson Correlation (Spearman Correlation) with MOS

TID2008 Test TID2013 CSIQ LIVE

`2 0.38 (0.53) 0.60 (0.69) 0.70 (0.81) 0.69 (0.94)
SSIM 0.51 (0.53) 0.62 (0.60) 0.77 (0.84) 0.84 (0.95)
MS-SSIM 0.78 (0.80) 0.78 (0.80) 0.81 (0.91) 0.77 (0.97)
FSIMc 0.68 (0.72) 0.67 (0.73) 0.63 (0.86) 0.80 (0.95)
NLAPD (with GDN) TID2008 0.81 (0.82) 0.82 (0.81) 0.90 (0.92) 0.88 (0.96)
AlexNet (with ReLU) TID2008 0.89 (0.89) 0.93 (0.91) 0.95 (0.95) 0.88 (0.94)
AlexNet (with GDN) TID2008 0.91 (0.91) 0.92 (0.91) 0.94 (0.95) 0.93 (0.95)
PerceptNet TID2008 0.93 (0.93) 0.90 (0.87) 0.94 (0.96) 0.95 (0.98)
LPIPS AlexNet (tune) ImageNet + BAPPS 0.74 (0.75) 0.76 (0.76) 0.88 (0.93) 0.85 (0.96)
LPIPS AlexNet (scratch) BAPPS 0.47 (0.47) 0.58 (0.57) 0.72 (0.80) 0.77 (0.89)
PerceptNet (tune) TID2008 + BAPPS 0.67 (0.72) 0.75 (0.76) 0.81 (0.88) 0.85 (0.94)
PerceptNet (scratch) BAPPS 0.56 (0.67) 0.67 (0.72) 0.77 (0.84) 0.80 (0.93)

Table 2: Traditional IQMs and state-of-the-art approaches evaluated on a variety of datasets. We report the Pearson and
Spearman correlations between distances obtained using these methods and the MOS. For methods that are feature extractors
(AlexNet, PerceptNet) we took the `2 distance between features obtained using the reference and distorted images.

Method Trained On 2AFC Accuracy (%)

Average
Trad-
itional

CNN
Based

Super
Res

Video
Deblur

Colour-
isation

Frame
Interp

LPIPS AlexNet (tune) ImageNet + BAPPS 69.7 77.7 83.5 69.1 60.5 64.8 62.9
LPIPS AlexNet (scratch) BAPPS 70.2 77.6 82.8 71.1 61.0 65.6 63.3
LPIPS PerceptNet (tune) TID2008 + BAPPS 67.8 69.4 81.3 70.6 60.9 61.9 62.6
LPIPS PerceptNet (scratch) BAPPS 69.2 75.3 82.5 71.3 61.4 63.6 63.2
AlexNet TID2008 63.2 56.1 77.4 66.1 58.6 61.6 56.2
PerceptNet TID2008 64.9 58.1 80.5 68.3 59.6 61.6 58.2

Table 3: Two-alternative forced choice (2AFC) accuracy scores for various architectures, all evaluated on the BAPPS [8]
dataset. The accuracy is the percentage of samples that the method agreed with the majority of human observers.

Fig. 3: Difference in the output of the network for a reference image and distortion image. The channels shown are those that
are the maximum in `2 distance between the outputs. Each difference in channels was scaled to [0, 255]. The image is from the
TID2008 test set and the distortion is the maximum magnitude for JPEG2000 transmission errors.

dict human perceived distance when images are subject to a
number of distortions. This transformation is implemented
as a deep neural network. We show that this network can
generalise to datasets to more distortions than are present in
the training set. It clearly performs better than traditional im-
age quality metrics. Although it has two orders of magnitude
less parameters, its performance is similar to the AlexNet net-

work. Visualising the output of the transformation shows that
the perceptual space (output) contains a number of desirable
properties that are thought to be present in the human visual
system. We also show that substituting ReLU layers by GDN
layers (inspired by the human visual system) in AlexNet in-
creases its ability to judge perceptual similarity.
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